Internal
problem
ID
[4042]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
11,
Series
Solutions
to
Linear
Differential
Equations.
Exercises
for
11.5.
page
771
Problem
number
:
11
Date
solved
:
Tuesday, March 04, 2025 at 05:23:24 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=x^2*(1+x)*diff(diff(y(x),x),x)+x^2*diff(y(x),x)-2*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=x^2*(1+x)*D[y[x],{x,2}]+x^2*D[y[x],x]-2*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(x + 1)*Derivative(y(x), (x, 2)) + x**2*Derivative(y(x), x) - 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)