Internal
problem
ID
[4303]
Book
:
An
introduction
to
the
solution
and
applications
of
differential
equations,
J.W.
Searl,
1966
Section
:
Chapter
4,
Ex.
4.2
Problem
number
:
3
Date
solved
:
Tuesday, March 04, 2025 at 06:19:23 PM
CAS
classification
:
[_separable]
ode:=r*diff(y(r),r) = (a^2-r^2)/(a^2+r^2)*tan(y(r)); dsolve(ode,y(r), singsol=all);
ode=r*D[y[r],r]== (a^2-r^2)/(a^2+r^2)*Tan[y[r]]; ic={}; DSolve[{ode,ic},y[r],r,IncludeSingularSolutions->True]
from sympy import * r = symbols("r") a = symbols("a") y = Function("y") ode = Eq(r*Derivative(y(r), r) - (a**2 - r**2)*tan(y(r))/(a**2 + r**2),0) ics = {} dsolve(ode,func=y(r),ics=ics)