29.3.24 problem 78

Internal problem ID [4686]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 3
Problem number : 78
Date solved : Tuesday, January 28, 2025 at 02:39:24 PM
CAS classification : [_Abel]

\begin{align*} y^{\prime }&=\left (a \,{\mathrm e}^{x}+y\right ) y^{2} \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 62

dsolve(diff(y(x),x) = (a*exp(x)+y(x))*y(x)^2,y(x), singsol=all)
 
\[ \frac {a \,\operatorname {erf}\left (\frac {\left (a \,{\mathrm e}^{x} y \left (x \right )+1\right ) \sqrt {2}}{2 y \left (x \right )}\right ) \sqrt {2}\, \sqrt {\pi }+2 c_{1} a +2 \,{\mathrm e}^{-x -\frac {\left (a \,{\mathrm e}^{x} y \left (x \right )+1\right )^{2}}{2 y \left (x \right )^{2}}}}{2 a} = 0 \]

Solution by Mathematica

Time used: 0.675 (sec). Leaf size: 78

DSolve[D[y[x],x]==(a Exp[x]+y[x])y[x]^2,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [-i a e^x=\frac {2 e^{\frac {1}{2} \left (-i a e^x-\frac {i}{y(x)}\right )^2}}{\sqrt {2 \pi } \text {erfi}\left (\frac {-i a e^x-\frac {i}{y(x)}}{\sqrt {2}}\right )+2 c_1},y(x)\right ] \]