Internal
problem
ID
[4305]
Book
:
An
introduction
to
the
solution
and
applications
of
differential
equations,
J.W.
Searl,
1966
Section
:
Chapter
4,
Ex.
4.2
Problem
number
:
5
Date
solved
:
Tuesday, March 04, 2025 at 06:19:31 PM
CAS
classification
:
[_separable]
With initial conditions
ode:=diff(y(x),x) = x*(1+y(x)^2)/y(x)/(x^2+1); ic:=y(0) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],x]==(x*(1+y[x]^2))/(y[x]*(1+x^2)); ic=y[0]==1; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*(y(x)**2 + 1)/((x**2 + 1)*y(x)) + Derivative(y(x), x),0) ics = {y(0): 1} dsolve(ode,func=y(x),ics=ics)