5.23.6 Problems 501 to 518

Table 5.1013: Higher order, Linear, non-homogeneous and constant coefficients

#

ODE

Mathematica

Maple

19195

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime }+y = a \,x^{2}+b \,{\mathrm e}^{-x} \sin \left (2 x \right ) \]

19198

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = x^{2} \cos \left (x \right ) \]

19199

\[ {}y^{\prime \prime \prime \prime }-y = x \sin \left (x \right ) \]

19203

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime }+y = {\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) \]

19204

\[ {}y^{\left (6\right )}-2 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+3 y^{\prime \prime }-2 y^{\prime }+y = \sin \left (\frac {x}{2}\right )^{2}+{\mathrm e}^{x} \]

19205

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime }+16 y = 16 x^{2}+256 \]

19207

\[ {}y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = 96 \sin \left (2 x \right ) \cos \left (x \right ) \]

19210

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 24 x \cos \left (x \right ) \]

19364

\[ {}y^{\prime \prime \prime } = f \left (x \right ) \]

19411

\[ {}y^{\left (5\right )}-n^{2} y^{\prime \prime \prime } = {\mathrm e}^{a x} \]

19425

\[ {}y^{\prime \prime \prime } = \sin \left (x \right )^{2} \]

19532

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x} \]

19534

\[ {}y^{\prime \prime \prime }+y = \left (1+{\mathrm e}^{x}\right )^{2} \]

19536

\[ {}y^{\prime \prime \prime }+a^{2} y^{\prime } = \sin \left (a x \right ) \]

19537

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = {\mathrm e}^{x}+\cos \left (x \right ) \]

19539

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x^{2} \]

19602

\[ {}y^{\prime \prime \prime } = x \,{\mathrm e}^{x} \]

19638

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{2 x} \]