28.2.9 problem 9

Internal problem ID [4452]
Book : Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section : Chapter 4. Linear Differential Equations. Page 183
Problem number : 9
Date solved : Tuesday, March 04, 2025 at 06:44:20 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 21
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-2*diff(diff(diff(y(x),x),x),x)+2*diff(diff(y(x),x),x)-2*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = {\mathrm e}^{x} \left (c_{2} x +c_{1} \right )+c_3 \sin \left (x \right )+c_4 \cos \left (x \right ) \]
Mathematica. Time used: 0.003 (sec). Leaf size: 27
ode=D[y[x],{x,4}]-2*D[y[x],{x,3}]+2*D[y[x],{x,2}]-2*D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^x (c_4 x+c_3)+c_1 \cos (x)+c_2 \sin (x) \]
Sympy. Time used: 0.180 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - 2*Derivative(y(x), x) + 2*Derivative(y(x), (x, 2)) - 2*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{3} \sin {\left (x \right )} + C_{4} \cos {\left (x \right )} + \left (C_{1} + C_{2} x\right ) e^{x} \]