28.2.10 problem 10

Internal problem ID [4453]
Book : Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section : Chapter 4. Linear Differential Equations. Page 183
Problem number : 10
Date solved : Tuesday, March 04, 2025 at 06:44:21 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+5 y^{\prime \prime }+5 y^{\prime }-6 y&=0 \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 27
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-5*diff(diff(diff(y(x),x),x),x)+5*diff(diff(y(x),x),x)+5*diff(y(x),x)-6*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = {\mathrm e}^{x} c_{1} +c_{2} {\mathrm e}^{-x}+c_3 \,{\mathrm e}^{2 x}+c_4 \,{\mathrm e}^{3 x} \]
Mathematica. Time used: 0.004 (sec). Leaf size: 36
ode=D[y[x],{x,4}]-5*D[y[x],{x,3}]+5*D[y[x],{x,2}]+5*D[y[x],x]-6*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 e^{-x}+c_2 e^x+c_3 e^{2 x}+c_4 e^{3 x} \]
Sympy. Time used: 0.196 (sec). Leaf size: 26
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-6*y(x) + 5*Derivative(y(x), x) + 5*Derivative(y(x), (x, 2)) - 5*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- x} + C_{2} e^{x} + C_{3} e^{2 x} + C_{4} e^{3 x} \]