Internal
problem
ID
[5214]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
22
Problem
number
:
622
Date
solved
:
Monday, January 27, 2025 at 10:21:28 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
\begin{align*} \left (3 x +y\right )^{2} y^{\prime }&=4 \left (3 x +2 y\right ) y \end{align*}
Time used: 0.039 (sec). Leaf size: 44
\[
-\ln \left (\frac {x +y \left (x \right )}{x}\right )-3 \ln \left (\frac {y \left (x \right )-3 x}{x}\right )+3 \ln \left (\frac {y \left (x \right )}{x}\right )-\ln \left (x \right )-c_{1} = 0
\]
Time used: 60.180 (sec). Leaf size: 747
\begin{align*}
y(x)\to \frac {1}{4} \left (-\sqrt {12 \sqrt [3]{-e^{c_1} x^4 \left (-16 x+e^{c_1}\right )}+16 x^2-16 e^{c_1} x+e^{2 c_1}}-\sqrt {2} \sqrt {-6 \sqrt [3]{-e^{c_1} x^4 \left (-16 x+e^{c_1}\right )}-48 x^2+\frac {\left (-8 x+e^{c_1}\right ){}^3-72 x^2 \left (-8 x+e^{c_1}\right )}{\sqrt {12 \sqrt [3]{-e^{c_1} x^4 \left (-16 x+e^{c_1}\right )}+16 x^2-16 e^{c_1} x+e^{2 c_1}}}+\left (-8 x+e^{c_1}\right ){}^2}+8 x-e^{c_1}\right ) \\
y(x)\to \frac {1}{4} \left (-\sqrt {12 \sqrt [3]{-e^{c_1} x^4 \left (-16 x+e^{c_1}\right )}+16 x^2-16 e^{c_1} x+e^{2 c_1}}+\sqrt {2} \sqrt {-6 \sqrt [3]{-e^{c_1} x^4 \left (-16 x+e^{c_1}\right )}-48 x^2+\frac {\left (-8 x+e^{c_1}\right ){}^3-72 x^2 \left (-8 x+e^{c_1}\right )}{\sqrt {12 \sqrt [3]{-e^{c_1} x^4 \left (-16 x+e^{c_1}\right )}+16 x^2-16 e^{c_1} x+e^{2 c_1}}}+\left (-8 x+e^{c_1}\right ){}^2}+8 x-e^{c_1}\right ) \\
y(x)\to \frac {1}{4} \left (\sqrt {12 \sqrt [3]{-e^{c_1} x^4 \left (-16 x+e^{c_1}\right )}+16 x^2-16 e^{c_1} x+e^{2 c_1}}-\sqrt {2} \sqrt {-6 \sqrt [3]{-e^{c_1} x^4 \left (-16 x+e^{c_1}\right )}-48 x^2+\frac {72 x^2 \left (-8 x+e^{c_1}\right )-\left (-8 x+e^{c_1}\right ){}^3}{\sqrt {12 \sqrt [3]{-e^{c_1} x^4 \left (-16 x+e^{c_1}\right )}+16 x^2-16 e^{c_1} x+e^{2 c_1}}}+\left (-8 x+e^{c_1}\right ){}^2}+8 x-e^{c_1}\right ) \\
y(x)\to \frac {1}{4} \left (\sqrt {12 \sqrt [3]{-e^{c_1} x^4 \left (-16 x+e^{c_1}\right )}+16 x^2-16 e^{c_1} x+e^{2 c_1}}+\sqrt {2} \sqrt {-6 \sqrt [3]{-e^{c_1} x^4 \left (-16 x+e^{c_1}\right )}-48 x^2+\frac {72 x^2 \left (-8 x+e^{c_1}\right )-\left (-8 x+e^{c_1}\right ){}^3}{\sqrt {12 \sqrt [3]{-e^{c_1} x^4 \left (-16 x+e^{c_1}\right )}+16 x^2-16 e^{c_1} x+e^{2 c_1}}}+\left (-8 x+e^{c_1}\right ){}^2}+8 x-e^{c_1}\right ) \\
\end{align*}