Internal
problem
ID
[5215]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
22
Problem
number
:
623
Date
solved
:
Monday, January 27, 2025 at 10:21:47 AM
CAS
classification
:
[[_homogeneous, `class C`], _rational]
\begin{align*} \left (1-3 x -y\right )^{2} y^{\prime }&=\left (1-2 y\right ) \left (3-6 x -4 y\right ) \end{align*}
Time used: 0.309 (sec). Leaf size: 75
\[
-4 \ln \left (2\right )-\ln \left (\frac {-3 y \left (x \right )+2-3 x}{6 x -1}\right )-3 \ln \left (\frac {3 x -y \left (x \right )}{6 x -1}\right )+3 \ln \left (\frac {1-2 y \left (x \right )}{6 x -1}\right )-\ln \left (6 x -1\right )-c_{1} = 0
\]
Time used: 60.197 (sec). Leaf size: 1089
\begin{align*}
y(x)\to \frac {1}{6} \left (-\sqrt {36 x^2-12 x+16 e^{c_1} (6 x-1)+3\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x-1+e^{c_1}\right )}+1+16 e^{2 c_1}}-\frac {1}{2} \sqrt {-\frac {8 \left (-(6 x-1)^3+96 e^{2 c_1} (6 x-1)+30 e^{c_1} (1-6 x)^2+64 e^{3 c_1}\right )}{\sqrt {36 x^2-12 x+16 e^{c_1} (6 x-1)+3\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x-1+e^{c_1}\right )}+1+16 e^{2 c_1}}}+8 \left (12 x+1+4 e^{c_1}\right ){}^2-96 \left (3 x (3 x+1)+2 e^{c_1}\right )-12\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x-1+e^{c_1}\right )}}+12 x+1+4 e^{c_1}\right ) \\
y(x)\to \frac {1}{6} \left (-\sqrt {36 x^2-12 x+16 e^{c_1} (6 x-1)+3\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x-1+e^{c_1}\right )}+1+16 e^{2 c_1}}+\frac {1}{2} \sqrt {-\frac {8 \left (-(6 x-1)^3+96 e^{2 c_1} (6 x-1)+30 e^{c_1} (1-6 x)^2+64 e^{3 c_1}\right )}{\sqrt {36 x^2-12 x+16 e^{c_1} (6 x-1)+3\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x-1+e^{c_1}\right )}+1+16 e^{2 c_1}}}+8 \left (12 x+1+4 e^{c_1}\right ){}^2-96 \left (3 x (3 x+1)+2 e^{c_1}\right )-12\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x-1+e^{c_1}\right )}}+12 x+1+4 e^{c_1}\right ) \\
y(x)\to \frac {1}{6} \left (\sqrt {36 x^2-12 x+16 e^{c_1} (6 x-1)+3\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x-1+e^{c_1}\right )}+1+16 e^{2 c_1}}-\frac {1}{2} \sqrt {\frac {8 \left (-(6 x-1)^3+96 e^{2 c_1} (6 x-1)+30 e^{c_1} (1-6 x)^2+64 e^{3 c_1}\right )}{\sqrt {36 x^2-12 x+16 e^{c_1} (6 x-1)+3\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x-1+e^{c_1}\right )}+1+16 e^{2 c_1}}}+8 \left (12 x+1+4 e^{c_1}\right ){}^2-96 \left (3 x (3 x+1)+2 e^{c_1}\right )-12\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x-1+e^{c_1}\right )}}+12 x+1+4 e^{c_1}\right ) \\
y(x)\to \frac {1}{6} \left (\sqrt {36 x^2-12 x+16 e^{c_1} (6 x-1)+3\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x-1+e^{c_1}\right )}+1+16 e^{2 c_1}}+\frac {1}{2} \sqrt {\frac {8 \left (-(6 x-1)^3+96 e^{2 c_1} (6 x-1)+30 e^{c_1} (1-6 x)^2+64 e^{3 c_1}\right )}{\sqrt {36 x^2-12 x+16 e^{c_1} (6 x-1)+3\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x-1+e^{c_1}\right )}+1+16 e^{2 c_1}}}+8 \left (12 x+1+4 e^{c_1}\right ){}^2-96 \left (3 x (3 x+1)+2 e^{c_1}\right )-12\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x-1+e^{c_1}\right )}}+12 x+1+4 e^{c_1}\right ) \\
\end{align*}