Internal
problem
ID
[5268]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
24
Problem
number
:
677
Date
solved
:
Monday, January 27, 2025 at 10:51:02 AM
CAS
classification
:
[[_homogeneous, `class A`], _exact, _rational, _dAlembert]
\begin{align*} \left (x^{3}+y^{3}\right ) y^{\prime }+x^{2} \left (a x +3 y\right )&=0 \end{align*}
Time used: 0.060 (sec). Leaf size: 29
\[
y \left (x \right ) = \frac {\operatorname {RootOf}\left (a \,x^{4} c_{1}^{{4}/{3}}+4 x^{3} c_{1} \textit {\_Z} +\textit {\_Z}^{4}-1\right )}{c_{1}^{{1}/{3}}}
\]
Time used: 60.157 (sec). Leaf size: 1430
\begin{align*}
y(x)\to \frac {\sqrt {\frac {\sqrt [3]{3} a x^4+\left (9 x^6+\sqrt {3} \sqrt {27 x^{12}+\left (-a x^4+e^{4 c_1}\right ){}^3}\right ){}^{2/3}-\sqrt [3]{3} e^{4 c_1}}{\sqrt [3]{9 x^6+\sqrt {3} \sqrt {27 x^{12}+\left (-a x^4+e^{4 c_1}\right ){}^3}}}}-\sqrt {-\sqrt [3]{9 x^6+\sqrt {3} \sqrt {27 x^{12}+\left (-a x^4+e^{4 c_1}\right ){}^3}}+\frac {\sqrt [3]{3} \left (-a x^4+e^{4 c_1}\right )}{\sqrt [3]{9 x^6+\sqrt {3} \sqrt {27 x^{12}+\left (-a x^4+e^{4 c_1}\right ){}^3}}}-\frac {6 \sqrt {2} x^3}{\sqrt {\frac {\sqrt [3]{3} a x^4+\left (9 x^6+\sqrt {3} \sqrt {27 x^{12}+\left (-a x^4+e^{4 c_1}\right ){}^3}\right ){}^{2/3}-\sqrt [3]{3} e^{4 c_1}}{\sqrt [3]{9 x^6+\sqrt {3} \sqrt {27 x^{12}+\left (-a x^4+e^{4 c_1}\right ){}^3}}}}}}}{\sqrt {2} \sqrt [3]{3}} \\
y(x)\to \frac {\sqrt {\frac {\sqrt [3]{3} a x^4+\left (9 x^6+\sqrt {3} \sqrt {27 x^{12}+\left (-a x^4+e^{4 c_1}\right ){}^3}\right ){}^{2/3}-\sqrt [3]{3} e^{4 c_1}}{\sqrt [3]{9 x^6+\sqrt {3} \sqrt {27 x^{12}+\left (-a x^4+e^{4 c_1}\right ){}^3}}}}+\sqrt {-\sqrt [3]{9 x^6+\sqrt {3} \sqrt {27 x^{12}+\left (-a x^4+e^{4 c_1}\right ){}^3}}+\frac {\sqrt [3]{3} \left (-a x^4+e^{4 c_1}\right )}{\sqrt [3]{9 x^6+\sqrt {3} \sqrt {27 x^{12}+\left (-a x^4+e^{4 c_1}\right ){}^3}}}-\frac {6 \sqrt {2} x^3}{\sqrt {\frac {\sqrt [3]{3} a x^4+\left (9 x^6+\sqrt {3} \sqrt {27 x^{12}+\left (-a x^4+e^{4 c_1}\right ){}^3}\right ){}^{2/3}-\sqrt [3]{3} e^{4 c_1}}{\sqrt [3]{9 x^6+\sqrt {3} \sqrt {27 x^{12}+\left (-a x^4+e^{4 c_1}\right ){}^3}}}}}}}{\sqrt {2} \sqrt [3]{3}} \\
y(x)\to -\frac {\sqrt {\frac {\sqrt [3]{3} a x^4+\left (9 x^6+\sqrt {3} \sqrt {27 x^{12}+\left (-a x^4+e^{4 c_1}\right ){}^3}\right ){}^{2/3}-\sqrt [3]{3} e^{4 c_1}}{\sqrt [3]{9 x^6+\sqrt {3} \sqrt {27 x^{12}+\left (-a x^4+e^{4 c_1}\right ){}^3}}}}+\sqrt {-\sqrt [3]{9 x^6+\sqrt {3} \sqrt {27 x^{12}+\left (-a x^4+e^{4 c_1}\right ){}^3}}+\frac {\sqrt [3]{3} \left (-a x^4+e^{4 c_1}\right )}{\sqrt [3]{9 x^6+\sqrt {3} \sqrt {27 x^{12}+\left (-a x^4+e^{4 c_1}\right ){}^3}}}+\frac {6 \sqrt {2} x^3}{\sqrt {\frac {\sqrt [3]{3} a x^4+\left (9 x^6+\sqrt {3} \sqrt {27 x^{12}+\left (-a x^4+e^{4 c_1}\right ){}^3}\right ){}^{2/3}-\sqrt [3]{3} e^{4 c_1}}{\sqrt [3]{9 x^6+\sqrt {3} \sqrt {27 x^{12}+\left (-a x^4+e^{4 c_1}\right ){}^3}}}}}}}{\sqrt {2} \sqrt [3]{3}} \\
y(x)\to \frac {\sqrt {-\sqrt [3]{9 x^6+\sqrt {3} \sqrt {27 x^{12}+\left (-a x^4+e^{4 c_1}\right ){}^3}}+\frac {\sqrt [3]{3} \left (-a x^4+e^{4 c_1}\right )}{\sqrt [3]{9 x^6+\sqrt {3} \sqrt {27 x^{12}+\left (-a x^4+e^{4 c_1}\right ){}^3}}}+\frac {6 \sqrt {2} x^3}{\sqrt {\frac {\sqrt [3]{3} a x^4+\left (9 x^6+\sqrt {3} \sqrt {27 x^{12}+\left (-a x^4+e^{4 c_1}\right ){}^3}\right ){}^{2/3}-\sqrt [3]{3} e^{4 c_1}}{\sqrt [3]{9 x^6+\sqrt {3} \sqrt {27 x^{12}+\left (-a x^4+e^{4 c_1}\right ){}^3}}}}}}-\sqrt {\frac {\sqrt [3]{3} a x^4+\left (9 x^6+\sqrt {3} \sqrt {27 x^{12}+\left (-a x^4+e^{4 c_1}\right ){}^3}\right ){}^{2/3}-\sqrt [3]{3} e^{4 c_1}}{\sqrt [3]{9 x^6+\sqrt {3} \sqrt {27 x^{12}+\left (-a x^4+e^{4 c_1}\right ){}^3}}}}}{\sqrt {2} \sqrt [3]{3}} \\
\end{align*}