Internal
problem
ID
[5269]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
24
Problem
number
:
678
Date
solved
:
Monday, January 27, 2025 at 10:54:24 AM
CAS
classification
:
[_exact, _rational]
\begin{align*} \left (x -x^{2} y-y^{3}\right ) y^{\prime }&=x^{3}-y+x y^{2} \end{align*}
Time used: 0.005 (sec). Leaf size: 29
\[
-\frac {x^{4}}{4}-\frac {x^{2} y \left (x \right )^{2}}{2}+x y \left (x \right )-\frac {y \left (x \right )^{4}}{4}+c_{1} = 0
\]
Time used: 60.206 (sec). Leaf size: 1807
\begin{align*}
y(x)\to -\frac {\sqrt {-2 x^2+\sqrt [3]{-8 x^6+9 (3+4 c_1) x^2+3 \sqrt {3} \sqrt {-16 x^8+\left (27-16 c_1{}^2+72 c_1\right ) x^4+64 c_1{}^3}}+\frac {4 \left (x^4-3 c_1\right )}{\sqrt [3]{-8 x^6+9 (3+4 c_1) x^2+3 \sqrt {3} \sqrt {-16 x^8+\left (27-16 c_1{}^2+72 c_1\right ) x^4+64 c_1{}^3}}}}}{\sqrt {6}}-\frac {1}{2} \sqrt {-\frac {8 x^2}{3}-\frac {4 \sqrt {6} x}{\sqrt {-2 x^2+\sqrt [3]{-8 x^6+9 (3+4 c_1) x^2+3 \sqrt {3} \sqrt {-16 x^8+\left (27-16 c_1{}^2+72 c_1\right ) x^4+64 c_1{}^3}}+\frac {4 \left (x^4-3 c_1\right )}{\sqrt [3]{-8 x^6+9 (3+4 c_1) x^2+3 \sqrt {3} \sqrt {-16 x^8+\left (27-16 c_1{}^2+72 c_1\right ) x^4+64 c_1{}^3}}}}}-\frac {2}{3} \sqrt [3]{-8 x^6+9 (3+4 c_1) x^2+3 \sqrt {3} \sqrt {-16 x^8+\left (27-16 c_1{}^2+72 c_1\right ) x^4+64 c_1{}^3}}-\frac {8 \left (x^4-3 c_1\right )}{3 \sqrt [3]{-8 x^6+9 (3+4 c_1) x^2+3 \sqrt {3} \sqrt {-16 x^8+\left (27-16 c_1{}^2+72 c_1\right ) x^4+64 c_1{}^3}}}} \\
y(x)\to \frac {1}{2} \sqrt {-\frac {8 x^2}{3}-\frac {4 \sqrt {6} x}{\sqrt {-2 x^2+\sqrt [3]{-8 x^6+9 (3+4 c_1) x^2+3 \sqrt {3} \sqrt {-16 x^8+\left (27-16 c_1{}^2+72 c_1\right ) x^4+64 c_1{}^3}}+\frac {4 \left (x^4-3 c_1\right )}{\sqrt [3]{-8 x^6+9 (3+4 c_1) x^2+3 \sqrt {3} \sqrt {-16 x^8+\left (27-16 c_1{}^2+72 c_1\right ) x^4+64 c_1{}^3}}}}}-\frac {2}{3} \sqrt [3]{-8 x^6+9 (3+4 c_1) x^2+3 \sqrt {3} \sqrt {-16 x^8+\left (27-16 c_1{}^2+72 c_1\right ) x^4+64 c_1{}^3}}-\frac {8 \left (x^4-3 c_1\right )}{3 \sqrt [3]{-8 x^6+9 (3+4 c_1) x^2+3 \sqrt {3} \sqrt {-16 x^8+\left (27-16 c_1{}^2+72 c_1\right ) x^4+64 c_1{}^3}}}}-\frac {\sqrt {-2 x^2+\sqrt [3]{-8 x^6+9 (3+4 c_1) x^2+3 \sqrt {3} \sqrt {-16 x^8+\left (27-16 c_1{}^2+72 c_1\right ) x^4+64 c_1{}^3}}+\frac {4 \left (x^4-3 c_1\right )}{\sqrt [3]{-8 x^6+9 (3+4 c_1) x^2+3 \sqrt {3} \sqrt {-16 x^8+\left (27-16 c_1{}^2+72 c_1\right ) x^4+64 c_1{}^3}}}}}{\sqrt {6}} \\
y(x)\to \frac {\sqrt {-2 x^2+\sqrt [3]{-8 x^6+9 (3+4 c_1) x^2+3 \sqrt {3} \sqrt {-16 x^8+\left (27-16 c_1{}^2+72 c_1\right ) x^4+64 c_1{}^3}}+\frac {4 \left (x^4-3 c_1\right )}{\sqrt [3]{-8 x^6+9 (3+4 c_1) x^2+3 \sqrt {3} \sqrt {-16 x^8+\left (27-16 c_1{}^2+72 c_1\right ) x^4+64 c_1{}^3}}}}}{\sqrt {6}}-\frac {1}{2} \sqrt {-\frac {8 x^2}{3}+\frac {4 \sqrt {6} x}{\sqrt {-2 x^2+\sqrt [3]{-8 x^6+9 (3+4 c_1) x^2+3 \sqrt {3} \sqrt {-16 x^8+\left (27-16 c_1{}^2+72 c_1\right ) x^4+64 c_1{}^3}}+\frac {4 \left (x^4-3 c_1\right )}{\sqrt [3]{-8 x^6+9 (3+4 c_1) x^2+3 \sqrt {3} \sqrt {-16 x^8+\left (27-16 c_1{}^2+72 c_1\right ) x^4+64 c_1{}^3}}}}}-\frac {2}{3} \sqrt [3]{-8 x^6+9 (3+4 c_1) x^2+3 \sqrt {3} \sqrt {-16 x^8+\left (27-16 c_1{}^2+72 c_1\right ) x^4+64 c_1{}^3}}-\frac {8 \left (x^4-3 c_1\right )}{3 \sqrt [3]{-8 x^6+9 (3+4 c_1) x^2+3 \sqrt {3} \sqrt {-16 x^8+\left (27-16 c_1{}^2+72 c_1\right ) x^4+64 c_1{}^3}}}} \\
y(x)\to \frac {\sqrt {-2 x^2+\sqrt [3]{-8 x^6+9 (3+4 c_1) x^2+3 \sqrt {3} \sqrt {-16 x^8+\left (27-16 c_1{}^2+72 c_1\right ) x^4+64 c_1{}^3}}+\frac {4 \left (x^4-3 c_1\right )}{\sqrt [3]{-8 x^6+9 (3+4 c_1) x^2+3 \sqrt {3} \sqrt {-16 x^8+\left (27-16 c_1{}^2+72 c_1\right ) x^4+64 c_1{}^3}}}}}{\sqrt {6}}+\frac {1}{2} \sqrt {-\frac {8 x^2}{3}+\frac {4 \sqrt {6} x}{\sqrt {-2 x^2+\sqrt [3]{-8 x^6+9 (3+4 c_1) x^2+3 \sqrt {3} \sqrt {-16 x^8+\left (27-16 c_1{}^2+72 c_1\right ) x^4+64 c_1{}^3}}+\frac {4 \left (x^4-3 c_1\right )}{\sqrt [3]{-8 x^6+9 (3+4 c_1) x^2+3 \sqrt {3} \sqrt {-16 x^8+\left (27-16 c_1{}^2+72 c_1\right ) x^4+64 c_1{}^3}}}}}-\frac {2}{3} \sqrt [3]{-8 x^6+9 (3+4 c_1) x^2+3 \sqrt {3} \sqrt {-16 x^8+\left (27-16 c_1{}^2+72 c_1\right ) x^4+64 c_1{}^3}}-\frac {8 \left (x^4-3 c_1\right )}{3 \sqrt [3]{-8 x^6+9 (3+4 c_1) x^2+3 \sqrt {3} \sqrt {-16 x^8+\left (27-16 c_1{}^2+72 c_1\right ) x^4+64 c_1{}^3}}}} \\
\end{align*}