Internal
problem
ID
[5001]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
14
Problem
number
:
403
Date
solved
:
Tuesday, March 04, 2025 at 07:42:07 PM
CAS
classification
:
[_separable]
ode:=diff(y(x),x)*(x^4+x^2+1)^(1/2) = (1+y(x)^2+y(x)^4)^(1/2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]Sqrt[1+x^2+x^4]==Sqrt[1+y[x]^2+y[x]^4]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(sqrt(x**4 + x**2 + 1)*Derivative(y(x), x) - sqrt(y(x)**4 + y(x)**2 + 1),0) ics = {} dsolve(ode,func=y(x),ics=ics)