29.28.3 problem 800
Internal
problem
ID
[5384]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
28
Problem
number
:
800
Date
solved
:
Wednesday, January 29, 2025 at 11:46:37 PM
CAS
classification
:
[[_homogeneous, `class G`]]
\begin{align*} {y^{\prime }}^{2}+a x y^{\prime }+b \,x^{2}+c y&=0 \end{align*}
✗ Solution by Maple
dsolve(diff(y(x),x)^2+a*x*diff(y(x),x)+b*x^2+c*y(x) = 0,y(x), singsol=all)
\[ \text {No solution found} \]
✓ Solution by Mathematica
Time used: 2.812 (sec). Leaf size: 1085
DSolve[(D[y[x],x])^2+a*x*D[y[x],x]+b*x^2+c*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
\begin{align*}
\text {Solve}\left [\text {RootSum}\left [\text {$\#$1}^4-2 \text {$\#$1}^3 c-2 \text {$\#$1}^2 a^2-4 \text {$\#$1}^2 a c+8 \text {$\#$1}^2 b-2 \text {$\#$1} a^2 c+8 \text {$\#$1} b c+a^4-8 a^2 b+16 b^2\&,\frac {-\text {$\#$1}^3 \log \left (\text {$\#$1} x-\sqrt {x^2 \left (a^2-4 b\right )-4 c y(x)}+2 \sqrt {-c y(x)}\right )+\text {$\#$1}^3 \log (x)+\text {$\#$1}^2 c \log \left (\text {$\#$1} x-\sqrt {x^2 \left (a^2-4 b\right )-4 c y(x)}+2 \sqrt {-c y(x)}\right )-\text {$\#$1}^2 c \log (x)+\text {$\#$1} a^2 \log \left (\text {$\#$1} x-\sqrt {x^2 \left (a^2-4 b\right )-4 c y(x)}+2 \sqrt {-c y(x)}\right )-4 \text {$\#$1} b \log \left (\text {$\#$1} x-\sqrt {x^2 \left (a^2-4 b\right )-4 c y(x)}+2 \sqrt {-c y(x)}\right )+2 \text {$\#$1} a c \log \left (\text {$\#$1} x-\sqrt {x^2 \left (a^2-4 b\right )-4 c y(x)}+2 \sqrt {-c y(x)}\right )+a^2 c \log \left (\text {$\#$1} x-\sqrt {x^2 \left (a^2-4 b\right )-4 c y(x)}+2 \sqrt {-c y(x)}\right )-4 b c \log \left (\text {$\#$1} x-\sqrt {x^2 \left (a^2-4 b\right )-4 c y(x)}+2 \sqrt {-c y(x)}\right )-\text {$\#$1} a^2 \log (x)-2 \text {$\#$1} a c \log (x)+4 \text {$\#$1} b \log (x)-a^2 c \log (x)+4 b c \log (x)}{-2 \text {$\#$1}^3+3 \text {$\#$1}^2 c+2 \text {$\#$1} a^2+4 \text {$\#$1} a c-8 \text {$\#$1} b+a^2 c-4 b c}\&\right ]-\log \left (\sqrt {-c y(x)} \sqrt {x^2 \left (a^2-4 b\right )-4 c y(x)}+2 c y(x)\right )+\frac {1}{2} \log (y(x))+2 \log (x)&=c_1,y(x)\right ] \\
\text {Solve}\left [\text {RootSum}\left [\text {$\#$1}^4+2 \text {$\#$1}^3 c-2 \text {$\#$1}^2 a^2-4 \text {$\#$1}^2 a c+8 \text {$\#$1}^2 b+2 \text {$\#$1} a^2 c-8 \text {$\#$1} b c+a^4-8 a^2 b+16 b^2\&,\frac {\text {$\#$1}^3 \log \left (\text {$\#$1} x-\sqrt {x^2 \left (a^2-4 b\right )-4 c y(x)}+2 \sqrt {-c y(x)}\right )+\text {$\#$1}^3 (-\log (x))+\text {$\#$1}^2 c \log \left (\text {$\#$1} x-\sqrt {x^2 \left (a^2-4 b\right )-4 c y(x)}+2 \sqrt {-c y(x)}\right )-\text {$\#$1}^2 c \log (x)-\text {$\#$1} a^2 \log \left (\text {$\#$1} x-\sqrt {x^2 \left (a^2-4 b\right )-4 c y(x)}+2 \sqrt {-c y(x)}\right )+4 \text {$\#$1} b \log \left (\text {$\#$1} x-\sqrt {x^2 \left (a^2-4 b\right )-4 c y(x)}+2 \sqrt {-c y(x)}\right )-2 \text {$\#$1} a c \log \left (\text {$\#$1} x-\sqrt {x^2 \left (a^2-4 b\right )-4 c y(x)}+2 \sqrt {-c y(x)}\right )+a^2 c \log \left (\text {$\#$1} x-\sqrt {x^2 \left (a^2-4 b\right )-4 c y(x)}+2 \sqrt {-c y(x)}\right )-4 b c \log \left (\text {$\#$1} x-\sqrt {x^2 \left (a^2-4 b\right )-4 c y(x)}+2 \sqrt {-c y(x)}\right )+\text {$\#$1} a^2 \log (x)+2 \text {$\#$1} a c \log (x)-4 \text {$\#$1} b \log (x)-a^2 c \log (x)+4 b c \log (x)}{2 \text {$\#$1}^3+3 \text {$\#$1}^2 c-2 \text {$\#$1} a^2-4 \text {$\#$1} a c+8 \text {$\#$1} b+a^2 c-4 b c}\&\right ]-\log \left (\sqrt {-c y(x)} \sqrt {x^2 \left (a^2-4 b\right )-4 c y(x)}+2 c y(x)\right )+\frac {1}{2} \log (y(x))+2 \log (x)&=c_1,y(x)\right ] \\
\end{align*}