29.15.29 problem 437

Internal problem ID [5035]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 15
Problem number : 437
Date solved : Tuesday, March 04, 2025 at 07:45:19 PM
CAS classification : [[_homogeneous, `class A`], _exact, _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (x +y\right ) y^{\prime }&=x -y \end{align*}

Maple. Time used: 0.441 (sec). Leaf size: 51
ode:=(x+y(x))*diff(y(x),x) = x-y(x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y \left (x \right ) &= \frac {-c_{1} x -\sqrt {2 c_{1}^{2} x^{2}+1}}{c_{1}} \\ y \left (x \right ) &= \frac {-c_{1} x +\sqrt {2 c_{1}^{2} x^{2}+1}}{c_{1}} \\ \end{align*}
Mathematica. Time used: 0.487 (sec). Leaf size: 94
ode=(x+y[x])D[y[x],x]==x-y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -x-\sqrt {2 x^2+e^{2 c_1}} \\ y(x)\to -x+\sqrt {2 x^2+e^{2 c_1}} \\ y(x)\to -\sqrt {2} \sqrt {x^2}-x \\ y(x)\to \sqrt {2} \sqrt {x^2}-x \\ \end{align*}
Sympy. Time used: 1.133 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + (x + y(x))*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - x - \sqrt {C_{1} + 2 x^{2}}, \ y{\left (x \right )} = - x + \sqrt {C_{1} + 2 x^{2}}\right ] \]