29.29.13 problem 835
Internal
problem
ID
[5418]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
29
Problem
number
:
835
Date
solved
:
Monday, January 27, 2025 at 11:21:40 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _dAlembert]
\begin{align*} 3 {y^{\prime }}^{2}-2 x y^{\prime }+y&=0 \end{align*}
✓ Solution by Maple
Time used: 0.039 (sec). Leaf size: 603
dsolve(3*diff(y(x),x)^2-2*x*diff(y(x),x)+y(x) = 0,y(x), singsol=all)
\begin{align*}
y \left (x \right ) &= -\frac {\left (x^{2}+x \left (x^{3}+6 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-27 c_{1} \right )}-54 c_{1} \right )^{{1}/{3}}+\left (x^{3}+6 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-27 c_{1} \right )}-54 c_{1} \right )^{{2}/{3}}\right ) \left (x^{2}-3 x \left (x^{3}+6 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-27 c_{1} \right )}-54 c_{1} \right )^{{1}/{3}}+\left (x^{3}+6 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-27 c_{1} \right )}-54 c_{1} \right )^{{2}/{3}}\right )}{12 \left (x^{3}+6 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-27 c_{1} \right )}-54 c_{1} \right )^{{2}/{3}}} \\
y \left (x \right ) &= -\frac {\left (i \sqrt {3}\, \left (x^{3}+6 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-27 c_{1} \right )}-54 c_{1} \right )^{{2}/{3}}-i \sqrt {3}\, x^{2}+\left (x^{3}+6 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-27 c_{1} \right )}-54 c_{1} \right )^{{2}/{3}}-2 x \left (x^{3}+6 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-27 c_{1} \right )}-54 c_{1} \right )^{{1}/{3}}+x^{2}\right ) \left (i \sqrt {3}\, \left (x^{3}+6 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-27 c_{1} \right )}-54 c_{1} \right )^{{2}/{3}}-i \sqrt {3}\, x^{2}+\left (x^{3}+6 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-27 c_{1} \right )}-54 c_{1} \right )^{{2}/{3}}+6 x \left (x^{3}+6 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-27 c_{1} \right )}-54 c_{1} \right )^{{1}/{3}}+x^{2}\right )}{48 \left (x^{3}+6 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-27 c_{1} \right )}-54 c_{1} \right )^{{2}/{3}}} \\
y \left (x \right ) &= -\frac {\left (i \sqrt {3}\, x^{2}-i \sqrt {3}\, \left (x^{3}+6 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-27 c_{1} \right )}-54 c_{1} \right )^{{2}/{3}}+x^{2}-2 x \left (x^{3}+6 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-27 c_{1} \right )}-54 c_{1} \right )^{{1}/{3}}+\left (x^{3}+6 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-27 c_{1} \right )}-54 c_{1} \right )^{{2}/{3}}\right ) \left (i \sqrt {3}\, x^{2}-i \sqrt {3}\, \left (x^{3}+6 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-27 c_{1} \right )}-54 c_{1} \right )^{{2}/{3}}+x^{2}+6 x \left (x^{3}+6 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-27 c_{1} \right )}-54 c_{1} \right )^{{1}/{3}}+\left (x^{3}+6 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-27 c_{1} \right )}-54 c_{1} \right )^{{2}/{3}}\right )}{48 \left (x^{3}+6 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-27 c_{1} \right )}-54 c_{1} \right )^{{2}/{3}}} \\
\end{align*}
✓ Solution by Mathematica
Time used: 60.149 (sec). Leaf size: 995
DSolve[3 (D[y[x],x])^2-2 x D[y[x],x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
\begin{align*}
y(x)\to \frac {1}{12} \left (x^2+\frac {x \left (x^3+216 e^{3 c_1}\right )}{\sqrt [3]{x^6-540 e^{3 c_1} x^3+24 \sqrt {3} \sqrt {e^{3 c_1} \left (-x^3+27 e^{3 c_1}\right ){}^3}-5832 e^{6 c_1}}}+\sqrt [3]{x^6-540 e^{3 c_1} x^3+24 \sqrt {3} \sqrt {e^{3 c_1} \left (-x^3+27 e^{3 c_1}\right ){}^3}-5832 e^{6 c_1}}\right ) \\
y(x)\to \frac {1}{24} \left (2 x^2-\frac {i \left (\sqrt {3}-i\right ) x \left (x^3+216 e^{3 c_1}\right )}{\sqrt [3]{x^6-540 e^{3 c_1} x^3+24 \sqrt {3} \sqrt {e^{3 c_1} \left (-x^3+27 e^{3 c_1}\right ){}^3}-5832 e^{6 c_1}}}+i \left (\sqrt {3}+i\right ) \sqrt [3]{x^6-540 e^{3 c_1} x^3+24 \sqrt {3} \sqrt {e^{3 c_1} \left (-x^3+27 e^{3 c_1}\right ){}^3}-5832 e^{6 c_1}}\right ) \\
y(x)\to \frac {1}{24} \left (2 x^2+\frac {i \left (\sqrt {3}+i\right ) x \left (x^3+216 e^{3 c_1}\right )}{\sqrt [3]{x^6-540 e^{3 c_1} x^3+24 \sqrt {3} \sqrt {e^{3 c_1} \left (-x^3+27 e^{3 c_1}\right ){}^3}-5832 e^{6 c_1}}}-\left (1+i \sqrt {3}\right ) \sqrt [3]{x^6-540 e^{3 c_1} x^3+24 \sqrt {3} \sqrt {e^{3 c_1} \left (-x^3+27 e^{3 c_1}\right ){}^3}-5832 e^{6 c_1}}\right ) \\
y(x)\to \frac {x^4+\left (x^6+20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (x^3+e^{3 c_1}\right ){}^3}-8 e^{6 c_1}\right ){}^{2/3}+x^2 \sqrt [3]{x^6+20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (x^3+e^{3 c_1}\right ){}^3}-8 e^{6 c_1}}-8 e^{3 c_1} x}{12 \sqrt [3]{x^6+20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (x^3+e^{3 c_1}\right ){}^3}-8 e^{6 c_1}}} \\
y(x)\to \frac {1}{24} \left (2 x^2+\frac {\left (1+i \sqrt {3}\right ) x \left (-x^3+8 e^{3 c_1}\right )}{\sqrt [3]{x^6+20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (x^3+e^{3 c_1}\right ){}^3}-8 e^{6 c_1}}}+i \left (\sqrt {3}+i\right ) \sqrt [3]{x^6+20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (x^3+e^{3 c_1}\right ){}^3}-8 e^{6 c_1}}\right ) \\
y(x)\to \frac {1}{24} \left (2 x^2+\frac {i \left (\sqrt {3}+i\right ) x \left (x^3-8 e^{3 c_1}\right )}{\sqrt [3]{x^6+20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (x^3+e^{3 c_1}\right ){}^3}-8 e^{6 c_1}}}-\left (1+i \sqrt {3}\right ) \sqrt [3]{x^6+20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (x^3+e^{3 c_1}\right ){}^3}-8 e^{6 c_1}}\right ) \\
\end{align*}