29.18.6 problem 482

Internal problem ID [5080]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 18
Problem number : 482
Date solved : Tuesday, March 04, 2025 at 07:51:43 PM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (1+9 x -3 y\right ) y^{\prime }+2+3 x -y&=0 \end{align*}

Maple. Time used: 0.028 (sec). Leaf size: 23
ode:=(1+9*x-3*y(x))*diff(y(x),x)+2+3*x-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \frac {\operatorname {LambertW}\left (3 \,{\mathrm e}^{-20 x -3+20 c_{1}}\right )}{6}+3 x +\frac {1}{2} \]
Mathematica. Time used: 4.138 (sec). Leaf size: 37
ode=(1+9 x-3 y[x])D[y[x],x]+2+3 x-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{6} \left (W\left (-e^{-20 x-1+c_1}\right )+18 x+3\right ) \\ y(x)\to 3 x+\frac {1}{2} \\ \end{align*}
Sympy. Time used: 0.998 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*x + (9*x - 3*y(x) + 1)*Derivative(y(x), x) - y(x) + 2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = 3 x + \frac {W\left (C_{1} e^{- 20 x - 3}\right )}{6} + \frac {1}{2} \]