29.30.23 problem 883

Internal problem ID [5463]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 30
Problem number : 883
Date solved : Monday, January 27, 2025 at 11:24:46 AM
CAS classification : [_rational, _dAlembert]

\begin{align*} \left (5+3 x \right ) {y^{\prime }}^{2}-\left (3+3 y\right ) y^{\prime }+y&=0 \end{align*}

Solution by Maple

Time used: 0.053 (sec). Leaf size: 249

dsolve((5+3*x)*diff(y(x),x)^2-(3+3*y(x))*diff(y(x),x)+y(x) = 0,y(x), singsol=all)
 
\begin{align*} \frac {-108 \left (x -\frac {3 y \left (x \right )}{2}-\frac {\sqrt {9+9 y \left (x \right )^{2}+\left (-12 x -2\right ) y \left (x \right )}}{2}+\frac {1}{6}\right ) \left (c_{1} -\frac {\operatorname {Ei}_{1}\left (\frac {-9-9 y \left (x \right )-3 \sqrt {9+9 y \left (x \right )^{2}+\left (-12 x -2\right ) y \left (x \right )}}{6 x +10}\right )}{2}\right ) {\mathrm e}^{\frac {-9-9 y \left (x \right )-3 \sqrt {9+9 y \left (x \right )^{2}+\left (-12 x -2\right ) y \left (x \right )}}{6 x +10}}+18 x^{2}+6 x -40}{30+18 x} &= 0 \\ \frac {108 \left (c_{1} +\frac {\operatorname {Ei}_{1}\left (\frac {-9-9 y \left (x \right )+3 \sqrt {9+9 y \left (x \right )^{2}+\left (-12 x -2\right ) y \left (x \right )}}{6 x +10}\right )}{2}\right ) \left (x -\frac {3 y \left (x \right )}{2}+\frac {\sqrt {9+9 y \left (x \right )^{2}+\left (-12 x -2\right ) y \left (x \right )}}{2}+\frac {1}{6}\right ) {\mathrm e}^{\frac {-9-9 y \left (x \right )+3 \sqrt {9+9 y \left (x \right )^{2}+\left (-12 x -2\right ) y \left (x \right )}}{6 x +10}}+18 x^{2}+6 x -40}{30+18 x} &= 0 \\ \end{align*}

Solution by Mathematica

Time used: 1.828 (sec). Leaf size: 106

DSolve[(5+3 x) (D[y[x],x])^2-(3+3 y[x])D[y[x],x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\left \{x=\frac {e^{-3 K[1]} (3 K[1]-1) \left ((9-27 K[1]) \operatorname {ExpIntegralEi}(3 K[1])+4 e^{3 K[1]}\right )}{9 K[1]-3}+c_1 e^{-3 K[1]} (3 K[1]-1),y(x)=\frac {3 x K[1]^2}{3 K[1]-1}+\frac {5 K[1]^2-3 K[1]}{3 K[1]-1}\right \},\{y(x),K[1]\}\right ] \]