Internal
problem
ID
[5226]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
23
Problem
number
:
634
Date
solved
:
Tuesday, March 04, 2025 at 08:34:42 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=(x^2+x*y(x)+a*y(x)^2)*diff(y(x),x) = a*x^2+x*y(x)+y(x)^2; dsolve(ode,y(x), singsol=all);
ode=(x^2+x y[x]+a y[x]^2)D[y[x],x]==a x^2+x y[x]+y[x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(-a*x**2 - x*y(x) + (a*y(x)**2 + x**2 + x*y(x))*Derivative(y(x), x) - y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)