Internal
problem
ID
[5227]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
23
Problem
number
:
635
Date
solved
:
Tuesday, March 04, 2025 at 08:35:14 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=(a*x^2+2*x*y(x)-a*y(x)^2)*diff(y(x),x)+x^2-2*a*x*y(x)-y(x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=(a x^2+2 x y[x]-a y[x]^2)D[y[x],x]+x^2-2 a x y[x]-y[x]^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(-2*a*x*y(x) + x**2 + (a*x**2 - a*y(x)**2 + 2*x*y(x))*Derivative(y(x), x) - y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)