Internal
problem
ID
[5239]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
23
Problem
number
:
648
Date
solved
:
Tuesday, March 04, 2025 at 08:45:20 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=x*(x^2+a*x*y(x)+y(x)^2)*diff(y(x),x) = (x^2+b*x*y(x)+y(x)^2)*y(x); dsolve(ode,y(x), singsol=all);
ode=x(x^2+a x y[x]+y[x]^2)D[y[x],x]==(x^2+b x y[x]+y[x]^2)y[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(x*(a*x*y(x) + x**2 + y(x)**2)*Derivative(y(x), x) - (b*x*y(x) + x**2 + y(x)**2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : cannot determine truth value of Relational