Internal
problem
ID
[5240]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
23
Problem
number
:
649
Date
solved
:
Tuesday, March 04, 2025 at 08:52:02 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
\begin{align*} x \left (x^{2}-2 y^{2}\right ) y^{\prime }&=\left (2 x^{2}-y^{2}\right ) y \end{align*}
\begin{align*}
y(x)\to -\sqrt {-x^2+\frac {\sqrt [3]{\sqrt {81 e^{4 c_1} x^8-12 e^{6 c_1} x^6}-9 e^{2 c_1} x^4}}{\sqrt [3]{2} 3^{2/3}}+\frac {\sqrt [3]{\frac {2}{3}} e^{2 c_1} x^2}{\sqrt [3]{\sqrt {81 e^{4 c_1} x^8-12 e^{6 c_1} x^6}-9 e^{2 c_1} x^4}}} \\
y(x)\to \sqrt {-x^2+\frac {\sqrt [3]{\sqrt {81 e^{4 c_1} x^8-12 e^{6 c_1} x^6}-9 e^{2 c_1} x^4}}{\sqrt [3]{2} 3^{2/3}}+\frac {\sqrt [3]{\frac {2}{3}} e^{2 c_1} x^2}{\sqrt [3]{\sqrt {81 e^{4 c_1} x^8-12 e^{6 c_1} x^6}-9 e^{2 c_1} x^4}}} \\
y(x)\to -\frac {1}{2} \sqrt {-4 x^2+\left (\frac {2}{3}\right )^{2/3} \left (-1-i \sqrt {3}\right ) \sqrt [3]{\sqrt {81 e^{4 c_1} x^8-12 e^{6 c_1} x^6}-9 e^{2 c_1} x^4}-\frac {2 \sqrt [3]{2} \left (\sqrt {3}-3 i\right ) e^{2 c_1} x^2}{3^{5/6} \sqrt [3]{\sqrt {81 e^{4 c_1} x^8-12 e^{6 c_1} x^6}-9 e^{2 c_1} x^4}}} \\
y(x)\to \frac {1}{2} \sqrt {-4 x^2+\left (\frac {2}{3}\right )^{2/3} \left (-1-i \sqrt {3}\right ) \sqrt [3]{\sqrt {81 e^{4 c_1} x^8-12 e^{6 c_1} x^6}-9 e^{2 c_1} x^4}-\frac {2 \sqrt [3]{2} \left (\sqrt {3}-3 i\right ) e^{2 c_1} x^2}{3^{5/6} \sqrt [3]{\sqrt {81 e^{4 c_1} x^8-12 e^{6 c_1} x^6}-9 e^{2 c_1} x^4}}} \\
y(x)\to -\frac {1}{2} \sqrt {-4 x^2+i \left (\frac {2}{3}\right )^{2/3} \left (\sqrt {3}+i\right ) \sqrt [3]{\sqrt {81 e^{4 c_1} x^8-12 e^{6 c_1} x^6}-9 e^{2 c_1} x^4}-\frac {2 \sqrt [3]{2} \left (\sqrt {3}+3 i\right ) e^{2 c_1} x^2}{3^{5/6} \sqrt [3]{\sqrt {81 e^{4 c_1} x^8-12 e^{6 c_1} x^6}-9 e^{2 c_1} x^4}}} \\
y(x)\to \frac {1}{2} \sqrt {-4 x^2+i \left (\frac {2}{3}\right )^{2/3} \left (\sqrt {3}+i\right ) \sqrt [3]{\sqrt {81 e^{4 c_1} x^8-12 e^{6 c_1} x^6}-9 e^{2 c_1} x^4}-\frac {2 \sqrt [3]{2} \left (\sqrt {3}+3 i\right ) e^{2 c_1} x^2}{3^{5/6} \sqrt [3]{\sqrt {81 e^{4 c_1} x^8-12 e^{6 c_1} x^6}-9 e^{2 c_1} x^4}}} \\
\end{align*}