29.37.24 problem 1146

Internal problem ID [5682]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 37
Problem number : 1146
Date solved : Monday, January 27, 2025 at 01:06:44 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _dAlembert]

\begin{align*} \ln \left (y^{\prime }\right )+4 x y^{\prime }-2 y&=0 \end{align*}

Solution by Maple

Time used: 0.010 (sec). Leaf size: 75

dsolve(ln(diff(y(x),x))+4*x*diff(y(x),x)-2*y(x) = 0,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= -\ln \left (2\right )+\frac {\ln \left (\frac {-1+\sqrt {16 c_{1} x +1}}{x}\right )}{2}-\frac {1}{2}+\frac {\sqrt {16 c_{1} x +1}}{2} \\ y \left (x \right ) &= -\ln \left (2\right )+\frac {\ln \left (\frac {-1-\sqrt {16 c_{1} x +1}}{x}\right )}{2}-\frac {1}{2}-\frac {\sqrt {16 c_{1} x +1}}{2} \\ \end{align*}

Solution by Mathematica

Time used: 0.103 (sec). Leaf size: 36

DSolve[Log[D[y[x],x]]+4*x*D[y[x],x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [W\left (4 x e^{2 y(x)}\right )-\log \left (W\left (4 x e^{2 y(x)}\right )+2\right )-2 y(x)=c_1,y(x)\right ] \]