29.37.25 problem 1147

Internal problem ID [5683]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 37
Problem number : 1147
Date solved : Monday, January 27, 2025 at 01:06:47 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _Clairaut]

\begin{align*} \ln \left (y^{\prime }\right )+a \left (-y+x y^{\prime }\right )&=0 \end{align*}

Solution by Maple

Time used: 0.027 (sec). Leaf size: 32

dsolve(ln(diff(y(x),x))+a*(x*diff(y(x),x)-y(x)) = 0,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= \frac {\ln \left (-\frac {1}{a x}\right )-1}{a} \\ y \left (x \right ) &= c_{1} x +\frac {\ln \left (c_{1} \right )}{a} \\ \end{align*}

Solution by Mathematica

Time used: 0.046 (sec). Leaf size: 36

DSolve[Log[D[y[x],x]]+a*( x*D[y[x],x]-y[x])==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {\log (c_1)}{a}+c_1 x \\ y(x)\to \frac {\log \left (-\frac {1}{a x}\right )-1}{a} \\ \end{align*}