29.27.10 problem 776

Internal problem ID [5360]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 27
Problem number : 776
Date solved : Tuesday, March 04, 2025 at 09:32:07 PM
CAS classification : [_quadrature]

\begin{align*} {y^{\prime }}^{2}-7 y^{\prime }+12&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 17
ode:=diff(y(x),x)^2-7*diff(y(x),x)+12 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y \left (x \right ) &= 4 x +c_{1} \\ y \left (x \right ) &= 3 x +c_{1} \\ \end{align*}
Mathematica. Time used: 0.003 (sec). Leaf size: 21
ode=(D[y[x],x])^2-7*D[y[x],x]+12==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to 3 x+c_1 \\ y(x)\to 4 x+c_1 \\ \end{align*}
Sympy. Time used: 0.128 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x)**2 - 7*Derivative(y(x), x) + 12,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} + 4 x, \ y{\left (x \right )} = C_{1} + 3 x\right ] \]