29.27.11 problem 777

Internal problem ID [5361]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 27
Problem number : 777
Date solved : Tuesday, March 04, 2025 at 09:32:08 PM
CAS classification : [_quadrature]

\begin{align*} {y^{\prime }}^{2}+a y^{\prime }+b&=0 \end{align*}

Maple. Time used: 0.041 (sec). Leaf size: 43
ode:=diff(y(x),x)^2+a*diff(y(x),x)+b = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y \left (x \right ) &= -\frac {a x}{2}-\frac {x \sqrt {a^{2}-4 b}}{2}+c_{1} \\ y \left (x \right ) &= -\frac {a x}{2}+\frac {x \sqrt {a^{2}-4 b}}{2}+c_{1} \\ \end{align*}
Mathematica. Time used: 0.004 (sec). Leaf size: 59
ode=(D[y[x],x])^2+a*D[y[x],x]+b==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {1}{2} x \sqrt {a^2-4 b}-\frac {a x}{2}+c_1 \\ y(x)\to \frac {1}{2} x \sqrt {a^2-4 b}-\frac {a x}{2}+c_1 \\ \end{align*}
Sympy. Time used: 0.230 (sec). Leaf size: 44
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(a*Derivative(y(x), x) + b + Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} - \frac {a x}{2} - \frac {x \sqrt {a^{2} - 4 b}}{2}, \ y{\left (x \right )} = C_{1} - \frac {a x}{2} + \frac {x \sqrt {a^{2} - 4 b}}{2}\right ] \]