29.27.13 problem 779

Internal problem ID [5363]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 27
Problem number : 779
Date solved : Tuesday, March 04, 2025 at 09:32:10 PM
CAS classification : [_quadrature]

\begin{align*} {y^{\prime }}^{2}+a y^{\prime }+b y&=0 \end{align*}

Maple. Time used: 0.033 (sec). Leaf size: 245
ode:=diff(y(x),x)^2+a*diff(y(x),x)+b*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y \left (x \right ) &= -\frac {a^{2} \left (\operatorname {LambertW}\left (-\frac {2 \sqrt {-b}\, {\mathrm e}^{\frac {\left (-x +c_{1} \right ) b -a}{a}}}{a}\right )+2\right ) \operatorname {LambertW}\left (-\frac {2 \sqrt {-b}\, {\mathrm e}^{\frac {\left (-x +c_{1} \right ) b -a}{a}}}{a}\right )}{4 b} \\ y \left (x \right ) &= -\frac {a^{2} \left (\operatorname {LambertW}\left (\frac {2 \sqrt {-b}\, {\mathrm e}^{\frac {\left (-x +c_{1} \right ) b -a}{a}}}{a}\right )+2\right ) \operatorname {LambertW}\left (\frac {2 \sqrt {-b}\, {\mathrm e}^{\frac {\left (-x +c_{1} \right ) b -a}{a}}}{a}\right )}{4 b} \\ y \left (x \right ) &= {\mathrm e}^{\frac {-a \operatorname {LambertW}\left (\frac {2 \,{\mathrm e}^{\frac {\left (-x +c_{1} \right ) b -a}{a}}}{a \sqrt {-\frac {1}{b}}}\right )-a +\left (-x +c_{1} \right ) b}{a}} \left (a \sqrt {-\frac {1}{b}}+{\mathrm e}^{\frac {-a \operatorname {LambertW}\left (\frac {2 \,{\mathrm e}^{\frac {\left (-x +c_{1} \right ) b -a}{a}}}{a \sqrt {-\frac {1}{b}}}\right )-a +\left (-x +c_{1} \right ) b}{a}}\right ) \\ \end{align*}
Mathematica. Time used: 0.89 (sec). Leaf size: 119
ode=(D[y[x],x])^2+a*D[y[x],x]+b*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [-\frac {\sqrt {a^2-4 \text {$\#$1} b}+a \log \left (b \left (\sqrt {a^2-4 \text {$\#$1} b}-a\right )\right )}{2 b}\&\right ]\left [\frac {x}{2}+c_1\right ] \\ y(x)\to \text {InverseFunction}\left [-\frac {\sqrt {a^2-4 \text {$\#$1} b}-a \log \left (b \left (\sqrt {a^2-4 \text {$\#$1} b}+a\right )\right )}{2 b}\&\right ]\left [-\frac {x}{2}+c_1\right ] \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 1.188 (sec). Leaf size: 97
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(a*Derivative(y(x), x) + b*y(x) + Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ \begin {cases} \frac {a \log {\left (a + \sqrt {a^{2} - 4 b y{\left (x \right )}} \right )}}{2 b} - \frac {\sqrt {a^{2} - 4 b y{\left (x \right )}}}{2 b} & \text {for}\: b \neq 0 \\\frac {y{\left (x \right )}}{a + \sqrt {a^{2}}} & \text {otherwise} \end {cases} = C_{1} - \frac {x}{2}, \ \frac {a \log {\left (- a + \sqrt {a^{2} - 4 b y{\left (x \right )}} \right )}}{2 b} + \frac {x}{2} + \frac {\sqrt {a^{2} - 4 b y{\left (x \right )}}}{2 b} = C_{1}\right ] \]