29.27.14 problem 780

Internal problem ID [5364]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 27
Problem number : 780
Date solved : Tuesday, March 04, 2025 at 09:32:11 PM
CAS classification : [_quadrature]

\begin{align*} {y^{\prime }}^{2}+x y^{\prime }+1&=0 \end{align*}

Maple. Time used: 0.033 (sec). Leaf size: 63
ode:=diff(y(x),x)^2+x*diff(y(x),x)+1 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y \left (x \right ) &= -\frac {x^{2}}{4}-\frac {x \sqrt {x^{2}-4}}{4}+\ln \left (\sqrt {x^{2}-4}+x \right )+c_{1} \\ y \left (x \right ) &= \frac {x \sqrt {x^{2}-4}}{4}-\ln \left (\sqrt {x^{2}-4}+x \right )-\frac {x^{2}}{4}+c_{1} \\ \end{align*}
Mathematica. Time used: 0.123 (sec). Leaf size: 101
ode=(D[y[x],x])^2+x*D[y[x],x]+1==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\left (x^2-4\right ) \left (4 \arcsin \left (\frac {x}{2}\right )+\sqrt {4-x^2} x\right )}{4 \sqrt {-\left (x^2-4\right )^2}}-\frac {x^2}{4}+c_1 \\ y(x)\to -\frac {x^2}{4}+\frac {1}{4} \sqrt {x^2-4} x-\log \left (\sqrt {x^2-4}+x\right )+c_1 \\ \end{align*}
Sympy. Time used: 0.341 (sec). Leaf size: 65
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) + Derivative(y(x), x)**2 + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} - \frac {x^{2}}{4} - \frac {x \sqrt {x^{2} - 4}}{4} + \log {\left (x + \sqrt {x^{2} - 4} \right )}, \ y{\left (x \right )} = C_{1} - \frac {x^{2}}{4} + \frac {x \sqrt {x^{2} - 4}}{4} - \log {\left (x + \sqrt {x^{2} - 4} \right )}\right ] \]