32.1.4 problem First order with homogeneous Coefficients. Exercise 7.5, page 61

Internal problem ID [5774]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 2. Special types of differential equations of the first kind. Lesson 7
Problem number : First order with homogeneous Coefficients. Exercise 7.5, page 61
Date solved : Monday, January 27, 2025 at 01:16:27 PM
CAS classification : [[_homogeneous, `class A`], _dAlembert]

\begin{align*} x y^{\prime }-y-x \sin \left (\frac {y}{x}\right )&=0 \end{align*}

Solution by Maple

Time used: 0.036 (sec). Leaf size: 44

dsolve(x*diff(y(x),x)-y(x)-x*sin(y(x)/x)=0,y(x), singsol=all)
 
\[ y \left (x \right ) = \arctan \left (\frac {2 x c_{1}}{c_{1}^{2} x^{2}+1}, \frac {-c_{1}^{2} x^{2}+1}{c_{1}^{2} x^{2}+1}\right ) x \]

Solution by Mathematica

Time used: 0.336 (sec). Leaf size: 52

DSolve[x*D[y[x],x]-y[x]-x*Sin[y[x]/x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -x \arccos (-\tanh (\log (x)+c_1)) \\ y(x)\to x \arccos (-\tanh (\log (x)+c_1)) \\ y(x)\to 0 \\ y(x)\to -\pi x \\ y(x)\to \pi x \\ \end{align*}