29.29.19 problem 841

Internal problem ID [5424]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 29
Problem number : 841
Date solved : Tuesday, March 04, 2025 at 09:37:50 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _dAlembert]

\begin{align*} 5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y&=0 \end{align*}

Maple. Time used: 0.047 (sec). Leaf size: 85
ode:=5*diff(y(x),x)^2+6*x*diff(y(x),x)-2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \frac {c_{1}}{\left (-15 x -5 \sqrt {9 x^{2}+10 y \left (x \right )}\right )^{{3}/{2}}}+\frac {2 x}{5}-\frac {\sqrt {9 x^{2}+10 y \left (x \right )}}{5} &= 0 \\ \frac {c_{1}}{\left (-15 x +5 \sqrt {9 x^{2}+10 y \left (x \right )}\right )^{{3}/{2}}}+\frac {2 x}{5}+\frac {\sqrt {9 x^{2}+10 y \left (x \right )}}{5} &= 0 \\ \end{align*}
Mathematica. Time used: 13.987 (sec). Leaf size: 771
ode=5 (D[y[x],x])^2+6 x D[y[x],x]-2 y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(6*x*Derivative(y(x), x) - 2*y(x) + 5*Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE 3*x/5 - sqrt(9*x**2 + 10*y(x))/5 + Derivative(y(x), x) cannot be solved by the factorable group method