Internal
problem
ID
[5807]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
9
Problem
number
:
Exact
Differential
equations.
Exercise
9.12,
page
79
Date
solved
:
Monday, January 27, 2025 at 01:19:48 PM
CAS
classification
:
[[_homogeneous, `class A`], _exact, _dAlembert]
\begin{align*} x \sqrt {x^{2}+y^{2}}-\frac {x^{2} y y^{\prime }}{y-\sqrt {x^{2}+y^{2}}}&=0 \end{align*}
Time used: 0.007 (sec). Leaf size: 19
\[
c_{1} +\left (x^{2}+y \left (x \right )^{2}\right )^{{3}/{2}}+y \left (x \right )^{3} = 0
\]
Time used: 60.309 (sec). Leaf size: 2125
\begin{align*}
y(x)\to -\frac {x^2 \sqrt {\frac {e^{6 c_1}}{x^4}-6 x^2+\frac {3 \left (5 x^6-4 e^{6 c_1}\right )}{\sqrt [3]{-11 x^{12}+14 e^{6 c_1} x^6+2 \sqrt {\left (-x^6+e^{6 c_1}\right ) \left (x^6+e^{6 c_1}\right ){}^3}-2 e^{12 c_1}}}+\frac {3 \sqrt [3]{-11 x^{12}+14 e^{6 c_1} x^6+2 \sqrt {\left (-x^6+e^{6 c_1}\right ) \left (x^6+e^{6 c_1}\right ){}^3}-2 e^{12 c_1}}}{x^2}}+x^2 \sqrt {\frac {2 e^{6 c_1}}{x^4}-12 x^2+\frac {3 \left (-5 x^6+4 e^{6 c_1}\right )}{\sqrt [3]{-11 x^{12}+14 e^{6 c_1} x^6+2 \sqrt {\left (-x^6+e^{6 c_1}\right ) \left (x^6+e^{6 c_1}\right ){}^3}-2 e^{12 c_1}}}-\frac {3 \sqrt [3]{-11 x^{12}+14 e^{6 c_1} x^6+2 \sqrt {\left (-x^6+e^{6 c_1}\right ) \left (x^6+e^{6 c_1}\right ){}^3}-2 e^{12 c_1}}}{x^2}-\frac {2 e^{3 c_1} \left (-9+\frac {e^{6 c_1}}{x^6}\right )}{\sqrt {\frac {e^{6 c_1}}{x^4}-6 x^2+\frac {3 \left (5 x^6-4 e^{6 c_1}\right )}{\sqrt [3]{-11 x^{12}+14 e^{6 c_1} x^6+2 \sqrt {\left (-x^6+e^{6 c_1}\right ) \left (x^6+e^{6 c_1}\right ){}^3}-2 e^{12 c_1}}}+\frac {3 \sqrt [3]{-11 x^{12}+14 e^{6 c_1} x^6+2 \sqrt {\left (-x^6+e^{6 c_1}\right ) \left (x^6+e^{6 c_1}\right ){}^3}-2 e^{12 c_1}}}{x^2}}}}-e^{3 c_1}}{6 x^2} \\
y(x)\to \frac {x^2 \left (-\sqrt {\frac {e^{6 c_1}}{x^4}-6 x^2+\frac {3 \left (5 x^6-4 e^{6 c_1}\right )}{\sqrt [3]{-11 x^{12}+14 e^{6 c_1} x^6+2 \sqrt {\left (-x^6+e^{6 c_1}\right ) \left (x^6+e^{6 c_1}\right ){}^3}-2 e^{12 c_1}}}+\frac {3 \sqrt [3]{-11 x^{12}+14 e^{6 c_1} x^6+2 \sqrt {\left (-x^6+e^{6 c_1}\right ) \left (x^6+e^{6 c_1}\right ){}^3}-2 e^{12 c_1}}}{x^2}}\right )+x^2 \sqrt {\frac {2 e^{6 c_1}}{x^4}-12 x^2+\frac {3 \left (-5 x^6+4 e^{6 c_1}\right )}{\sqrt [3]{-11 x^{12}+14 e^{6 c_1} x^6+2 \sqrt {\left (-x^6+e^{6 c_1}\right ) \left (x^6+e^{6 c_1}\right ){}^3}-2 e^{12 c_1}}}-\frac {3 \sqrt [3]{-11 x^{12}+14 e^{6 c_1} x^6+2 \sqrt {\left (-x^6+e^{6 c_1}\right ) \left (x^6+e^{6 c_1}\right ){}^3}-2 e^{12 c_1}}}{x^2}-\frac {2 e^{3 c_1} \left (-9+\frac {e^{6 c_1}}{x^6}\right )}{\sqrt {\frac {e^{6 c_1}}{x^4}-6 x^2+\frac {3 \left (5 x^6-4 e^{6 c_1}\right )}{\sqrt [3]{-11 x^{12}+14 e^{6 c_1} x^6+2 \sqrt {\left (-x^6+e^{6 c_1}\right ) \left (x^6+e^{6 c_1}\right ){}^3}-2 e^{12 c_1}}}+\frac {3 \sqrt [3]{-11 x^{12}+14 e^{6 c_1} x^6+2 \sqrt {\left (-x^6+e^{6 c_1}\right ) \left (x^6+e^{6 c_1}\right ){}^3}-2 e^{12 c_1}}}{x^2}}}}+e^{3 c_1}}{6 x^2} \\
y(x)\to \frac {x^2 \sqrt {\frac {e^{6 c_1}}{x^4}-6 x^2+\frac {3 \left (5 x^6-4 e^{6 c_1}\right )}{\sqrt [3]{-11 x^{12}+14 e^{6 c_1} x^6+2 \sqrt {\left (-x^6+e^{6 c_1}\right ) \left (x^6+e^{6 c_1}\right ){}^3}-2 e^{12 c_1}}}+\frac {3 \sqrt [3]{-11 x^{12}+14 e^{6 c_1} x^6+2 \sqrt {\left (-x^6+e^{6 c_1}\right ) \left (x^6+e^{6 c_1}\right ){}^3}-2 e^{12 c_1}}}{x^2}}-x^2 \sqrt {\frac {2 e^{6 c_1}}{x^4}-12 x^2+\frac {3 \left (-5 x^6+4 e^{6 c_1}\right )}{\sqrt [3]{-11 x^{12}+14 e^{6 c_1} x^6+2 \sqrt {\left (-x^6+e^{6 c_1}\right ) \left (x^6+e^{6 c_1}\right ){}^3}-2 e^{12 c_1}}}-\frac {3 \sqrt [3]{-11 x^{12}+14 e^{6 c_1} x^6+2 \sqrt {\left (-x^6+e^{6 c_1}\right ) \left (x^6+e^{6 c_1}\right ){}^3}-2 e^{12 c_1}}}{x^2}+\frac {2 e^{3 c_1} \left (-9+\frac {e^{6 c_1}}{x^6}\right )}{\sqrt {\frac {e^{6 c_1}}{x^4}-6 x^2+\frac {3 \left (5 x^6-4 e^{6 c_1}\right )}{\sqrt [3]{-11 x^{12}+14 e^{6 c_1} x^6+2 \sqrt {\left (-x^6+e^{6 c_1}\right ) \left (x^6+e^{6 c_1}\right ){}^3}-2 e^{12 c_1}}}+\frac {3 \sqrt [3]{-11 x^{12}+14 e^{6 c_1} x^6+2 \sqrt {\left (-x^6+e^{6 c_1}\right ) \left (x^6+e^{6 c_1}\right ){}^3}-2 e^{12 c_1}}}{x^2}}}}+e^{3 c_1}}{6 x^2} \\
y(x)\to \frac {x^2 \sqrt {\frac {e^{6 c_1}}{x^4}-6 x^2+\frac {3 \left (5 x^6-4 e^{6 c_1}\right )}{\sqrt [3]{-11 x^{12}+14 e^{6 c_1} x^6+2 \sqrt {\left (-x^6+e^{6 c_1}\right ) \left (x^6+e^{6 c_1}\right ){}^3}-2 e^{12 c_1}}}+\frac {3 \sqrt [3]{-11 x^{12}+14 e^{6 c_1} x^6+2 \sqrt {\left (-x^6+e^{6 c_1}\right ) \left (x^6+e^{6 c_1}\right ){}^3}-2 e^{12 c_1}}}{x^2}}+x^2 \sqrt {\frac {2 e^{6 c_1}}{x^4}-12 x^2+\frac {3 \left (-5 x^6+4 e^{6 c_1}\right )}{\sqrt [3]{-11 x^{12}+14 e^{6 c_1} x^6+2 \sqrt {\left (-x^6+e^{6 c_1}\right ) \left (x^6+e^{6 c_1}\right ){}^3}-2 e^{12 c_1}}}-\frac {3 \sqrt [3]{-11 x^{12}+14 e^{6 c_1} x^6+2 \sqrt {\left (-x^6+e^{6 c_1}\right ) \left (x^6+e^{6 c_1}\right ){}^3}-2 e^{12 c_1}}}{x^2}+\frac {2 e^{3 c_1} \left (-9+\frac {e^{6 c_1}}{x^6}\right )}{\sqrt {\frac {e^{6 c_1}}{x^4}-6 x^2+\frac {3 \left (5 x^6-4 e^{6 c_1}\right )}{\sqrt [3]{-11 x^{12}+14 e^{6 c_1} x^6+2 \sqrt {\left (-x^6+e^{6 c_1}\right ) \left (x^6+e^{6 c_1}\right ){}^3}-2 e^{12 c_1}}}+\frac {3 \sqrt [3]{-11 x^{12}+14 e^{6 c_1} x^6+2 \sqrt {\left (-x^6+e^{6 c_1}\right ) \left (x^6+e^{6 c_1}\right ){}^3}-2 e^{12 c_1}}}{x^2}}}}+e^{3 c_1}}{6 x^2} \\
\end{align*}