29.29.33 problem 855

Internal problem ID [5438]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 29
Problem number : 855
Date solved : Tuesday, March 04, 2025 at 09:39:20 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} x {y^{\prime }}^{2}-y y^{\prime }+a x&=0 \end{align*}

Maple. Time used: 0.066 (sec). Leaf size: 50
ode:=x*diff(y(x),x)^2-y(x)*diff(y(x),x)+a*x = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \left (-\operatorname {LambertW}\left (-\frac {x^{2}}{c_{1}^{2} a}\right )+1\right ) a c_{1} \sqrt {-\frac {x^{2}}{c_{1}^{2} a \operatorname {LambertW}\left (-\frac {x^{2}}{c_{1}^{2} a}\right )}} \]
Mathematica. Time used: 4.248 (sec). Leaf size: 239
ode=x (D[y[x],x])^2-y[x] D[y[x],x]+a x==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solve}\left [\frac {i a}{\left (\sqrt {4 a-\frac {y(x)^2}{x^2}}-\frac {i y(x)}{x}\right )^2}+\frac {y(x)}{x \left (\sqrt {4 a-\frac {y(x)^2}{x^2}}-\frac {i y(x)}{x}\right )}+\frac {1}{2} i \log \left (\sqrt {4 a-\frac {y(x)^2}{x^2}}-\frac {i y(x)}{x}\right )&=c_1-\frac {1}{2} i \log (x),y(x)\right ] \\ \text {Solve}\left [-\frac {i a}{\left (\sqrt {4 a-\frac {y(x)^2}{x^2}}+\frac {i y(x)}{x}\right )^2}+\frac {y(x)}{x \left (\sqrt {4 a-\frac {y(x)^2}{x^2}}+\frac {i y(x)}{x}\right )}-\frac {1}{2} i \log \left (\sqrt {4 a-\frac {y(x)^2}{x^2}}+\frac {i y(x)}{x}\right )&=\frac {1}{2} i \log (x)+c_1,y(x)\right ] \\ \end{align*}
Sympy. Time used: 37.188 (sec). Leaf size: 275
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a*x + x*Derivative(y(x), x)**2 - y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ \log {\left (x \right )} = C_{1} - \log {\left (\left (\sqrt {- 4 a + \frac {y^{2}{\left (x \right )}}{x^{2}}} + \frac {y{\left (x \right )}}{x}\right )^{\frac {\sqrt {- 4 a + \frac {y^{2}{\left (x \right )}}{x^{2}}}}{\sqrt {- 4 a + \frac {y^{2}{\left (x \right )}}{x^{2}}} + \frac {y{\left (x \right )}}{x}}} \left (\sqrt {- 4 a + \frac {y^{2}{\left (x \right )}}{x^{2}}} + \frac {y{\left (x \right )}}{x}\right )^{\frac {y{\left (x \right )}}{x \left (\sqrt {- 4 a + \frac {y^{2}{\left (x \right )}}{x^{2}}} + \frac {y{\left (x \right )}}{x}\right )}} \right )} - \frac {y{\left (x \right )}}{x \left (\sqrt {- 4 a + \frac {y^{2}{\left (x \right )}}{x^{2}}} + \frac {y{\left (x \right )}}{x}\right )}, \ \log {\left (x \right )} = C_{1} + \frac {\sqrt {- 4 a + \frac {y^{2}{\left (x \right )}}{x^{2}}}}{\sqrt {- 4 a + \frac {y^{2}{\left (x \right )}}{x^{2}}} - \frac {y{\left (x \right )}}{x}} + \log {\left (\left (\sqrt {- 4 a + \frac {y^{2}{\left (x \right )}}{x^{2}}} - \frac {y{\left (x \right )}}{x}\right )^{- \frac {\sqrt {- 4 a + \frac {y^{2}{\left (x \right )}}{x^{2}}}}{\sqrt {- 4 a + \frac {y^{2}{\left (x \right )}}{x^{2}}} - \frac {y{\left (x \right )}}{x}}} \left (\sqrt {- 4 a + \frac {y^{2}{\left (x \right )}}{x^{2}}} - \frac {y{\left (x \right )}}{x}\right )^{\frac {y{\left (x \right )}}{x \left (\sqrt {- 4 a + \frac {y^{2}{\left (x \right )}}{x^{2}}} - \frac {y{\left (x \right )}}{x}\right )}} \right )}\right ] \]