29.29.34 problem 857

Internal problem ID [5439]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 29
Problem number : 857
Date solved : Tuesday, March 04, 2025 at 09:39:23 PM
CAS classification : [[_homogeneous, `class G`]]

\begin{align*} x {y^{\prime }}^{2}+y y^{\prime }+x^{3}&=0 \end{align*}

Maple. Time used: 0.092 (sec). Leaf size: 272
ode:=x*diff(y(x),x)^2+y(x)*diff(y(x),x)+x^3 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} -\int _{\textit {\_b}}^{x}\frac {y \left (x \right )-\sqrt {-4 \textit {\_a}^{4}+y \left (x \right )^{2}}}{\textit {\_a} \left (5 y \left (x \right )-\sqrt {-4 \textit {\_a}^{4}+y \left (x \right )^{2}}\right )}d \textit {\_a} -2 \left (\int _{}^{y \left (x \right )}\frac {1+\left (40 \textit {\_f} -8 \sqrt {-4 x^{4}+\textit {\_f}^{2}}\right ) \left (\int _{\textit {\_b}}^{x}\frac {\textit {\_a}^{3}}{\left (-5 \textit {\_f} +\sqrt {-4 \textit {\_a}^{4}+\textit {\_f}^{2}}\right )^{2} \sqrt {-4 \textit {\_a}^{4}+\textit {\_f}^{2}}}d \textit {\_a} \right )}{5 \textit {\_f} -\sqrt {-4 x^{4}+\textit {\_f}^{2}}}d \textit {\_f} \right )+c_{1} &= 0 \\ -\int _{\textit {\_b}}^{x}\frac {y \left (x \right )+\sqrt {-4 \textit {\_a}^{4}+y \left (x \right )^{2}}}{\left (\sqrt {-4 \textit {\_a}^{4}+y \left (x \right )^{2}}+5 y \left (x \right )\right ) \textit {\_a}}d \textit {\_a} +2 \left (\int _{}^{y \left (x \right )}\frac {-1+8 \left (\sqrt {-4 x^{4}+\textit {\_f}^{2}}+5 \textit {\_f} \right ) \left (\int _{\textit {\_b}}^{x}\frac {\textit {\_a}^{3}}{\left (\sqrt {-4 \textit {\_a}^{4}+\textit {\_f}^{2}}+5 \textit {\_f} \right )^{2} \sqrt {-4 \textit {\_a}^{4}+\textit {\_f}^{2}}}d \textit {\_a} \right )}{\sqrt {-4 x^{4}+\textit {\_f}^{2}}+5 \textit {\_f}}d \textit {\_f} \right )+c_{1} &= 0 \\ \end{align*}
Mathematica. Time used: 1.046 (sec). Leaf size: 107
ode=x (D[y[x],x])^2+y[x] D[y[x],x]+x^3==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to x^2 \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{5 K[2]+\sqrt {K[2]^2-4}}dK[2]\&\right ]\left [\int _1^x-\frac {1}{2 K[3]}dK[3]+c_1\right ] \\ y(x)\to x^2 \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{\sqrt {K[4]^2-4}-5 K[4]}dK[4]\&\right ]\left [\int _1^x\frac {1}{2 K[5]}dK[5]+c_1\right ] \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3 + x*Derivative(y(x), x)**2 + y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (sqrt(-4*x**4 + y(x)**2) - y(x))/(2*x) cannot be solved by the factorable group method