Internal
problem
ID
[5821]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
10
Problem
number
:
Recognizable
Exact
Differential
equations.
Integrating
factors.
Exercise
10.2,
page
90
Date
solved
:
Monday, January 27, 2025 at 01:20:02 PM
CAS
classification
:
[_exact]
\begin{align*} x^{2}+y \cos \left (x \right )+\left (y^{3}+\sin \left (x \right )\right ) y^{\prime }&=0 \end{align*}
Time used: 0.007 (sec). Leaf size: 21
\[
\frac {x^{3}}{3}+y \left (x \right ) \sin \left (x \right )+\frac {y \left (x \right )^{4}}{4}+c_{1} = 0
\]
Time used: 60.196 (sec). Leaf size: 1119
\begin{align*}
y(x)\to \frac {\sqrt {\frac {4 x^3+\left (27 \sin ^2(x)+\sqrt {729 \sin ^4(x)-64 \left (x^3-3 c_1\right ){}^3}\right ){}^{2/3}-12 c_1}{\sqrt [3]{27 \sin ^2(x)+\sqrt {729 \sin ^4(x)-64 \left (x^3-3 c_1\right ){}^3}}}}}{\sqrt {6}}-\frac {1}{2} \sqrt {-\frac {8 \left (x^3-3 c_1\right )}{3 \sqrt [3]{27 \sin ^2(x)+\sqrt {729 \sin ^4(x)-64 \left (x^3-3 c_1\right ){}^3}}}-\frac {2}{3} \sqrt [3]{27 \sin ^2(x)+\sqrt {729 \sin ^4(x)-64 \left (x^3-3 c_1\right ){}^3}}-\frac {4 \sqrt {6} \sin (x)}{\sqrt {\frac {4 x^3+\left (27 \sin ^2(x)+\sqrt {729 \sin ^4(x)-64 \left (x^3-3 c_1\right ){}^3}\right ){}^{2/3}-12 c_1}{\sqrt [3]{27 \sin ^2(x)+\sqrt {729 \sin ^4(x)-64 \left (x^3-3 c_1\right ){}^3}}}}}} \\
y(x)\to \frac {\sqrt {\frac {4 x^3+\left (27 \sin ^2(x)+\sqrt {729 \sin ^4(x)-64 \left (x^3-3 c_1\right ){}^3}\right ){}^{2/3}-12 c_1}{\sqrt [3]{27 \sin ^2(x)+\sqrt {729 \sin ^4(x)-64 \left (x^3-3 c_1\right ){}^3}}}}}{\sqrt {6}}+\frac {1}{2} \sqrt {-\frac {8 \left (x^3-3 c_1\right )}{3 \sqrt [3]{27 \sin ^2(x)+\sqrt {729 \sin ^4(x)-64 \left (x^3-3 c_1\right ){}^3}}}-\frac {2}{3} \sqrt [3]{27 \sin ^2(x)+\sqrt {729 \sin ^4(x)-64 \left (x^3-3 c_1\right ){}^3}}-\frac {4 \sqrt {6} \sin (x)}{\sqrt {\frac {4 x^3+\left (27 \sin ^2(x)+\sqrt {729 \sin ^4(x)-64 \left (x^3-3 c_1\right ){}^3}\right ){}^{2/3}-12 c_1}{\sqrt [3]{27 \sin ^2(x)+\sqrt {729 \sin ^4(x)-64 \left (x^3-3 c_1\right ){}^3}}}}}} \\
y(x)\to -\frac {\sqrt {\frac {4 x^3+\left (27 \sin ^2(x)+\sqrt {729 \sin ^4(x)-64 \left (x^3-3 c_1\right ){}^3}\right ){}^{2/3}-12 c_1}{\sqrt [3]{27 \sin ^2(x)+\sqrt {729 \sin ^4(x)-64 \left (x^3-3 c_1\right ){}^3}}}}}{\sqrt {6}}-\frac {1}{2} \sqrt {-\frac {8 \left (x^3-3 c_1\right )}{3 \sqrt [3]{27 \sin ^2(x)+\sqrt {729 \sin ^4(x)-64 \left (x^3-3 c_1\right ){}^3}}}-\frac {2}{3} \sqrt [3]{27 \sin ^2(x)+\sqrt {729 \sin ^4(x)-64 \left (x^3-3 c_1\right ){}^3}}+\frac {4 \sqrt {6} \sin (x)}{\sqrt {\frac {4 x^3+\left (27 \sin ^2(x)+\sqrt {729 \sin ^4(x)-64 \left (x^3-3 c_1\right ){}^3}\right ){}^{2/3}-12 c_1}{\sqrt [3]{27 \sin ^2(x)+\sqrt {729 \sin ^4(x)-64 \left (x^3-3 c_1\right ){}^3}}}}}} \\
y(x)\to \frac {1}{2} \sqrt {-\frac {8 \left (x^3-3 c_1\right )}{3 \sqrt [3]{27 \sin ^2(x)+\sqrt {729 \sin ^4(x)-64 \left (x^3-3 c_1\right ){}^3}}}-\frac {2}{3} \sqrt [3]{27 \sin ^2(x)+\sqrt {729 \sin ^4(x)-64 \left (x^3-3 c_1\right ){}^3}}+\frac {4 \sqrt {6} \sin (x)}{\sqrt {\frac {4 x^3+\left (27 \sin ^2(x)+\sqrt {729 \sin ^4(x)-64 \left (x^3-3 c_1\right ){}^3}\right ){}^{2/3}-12 c_1}{\sqrt [3]{27 \sin ^2(x)+\sqrt {729 \sin ^4(x)-64 \left (x^3-3 c_1\right ){}^3}}}}}}-\frac {\sqrt {\frac {4 x^3+\left (27 \sin ^2(x)+\sqrt {729 \sin ^4(x)-64 \left (x^3-3 c_1\right ){}^3}\right ){}^{2/3}-12 c_1}{\sqrt [3]{27 \sin ^2(x)+\sqrt {729 \sin ^4(x)-64 \left (x^3-3 c_1\right ){}^3}}}}}{\sqrt {6}} \\
\end{align*}