29.29.35 problem 858

Internal problem ID [5440]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 29
Problem number : 858
Date solved : Tuesday, March 04, 2025 at 09:39:27 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} x {y^{\prime }}^{2}-y y^{\prime }+a y&=0 \end{align*}

Maple. Time used: 0.062 (sec). Leaf size: 42
ode:=x*diff(y(x),x)^2-y(x)*diff(y(x),x)+a*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y \left (x \right ) &= 0 \\ y \left (x \right ) &= -\frac {\left (\operatorname {LambertW}\left (-\frac {x \,{\mathrm e}}{c_{1} a}\right )-1\right )^{2} a x}{\operatorname {LambertW}\left (-\frac {x \,{\mathrm e}}{c_{1} a}\right )} \\ \end{align*}
Mathematica. Time used: 2.599 (sec). Leaf size: 173
ode=x (D[y[x],x])^2-y[x] D[y[x],x]+a y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solve}\left [\text {arctanh}\left (\frac {\sqrt {\frac {y(x)}{x}-4 a}}{\sqrt {\frac {y(x)}{x}}}\right )+\frac {\sqrt {\frac {y(x)}{x}-4 a}}{\sqrt {\frac {y(x)}{x}-4 a}-\sqrt {\frac {y(x)}{x}}}&=\frac {\log (x)}{2}+c_1,y(x)\right ] \\ \text {Solve}\left [\text {arctanh}\left (\frac {\sqrt {\frac {y(x)}{x}-4 a}}{\sqrt {\frac {y(x)}{x}}}\right )-\frac {\sqrt {\frac {y(x)}{x}-4 a}}{\sqrt {\frac {y(x)}{x}-4 a}+\sqrt {\frac {y(x)}{x}}}&=-\frac {\log (x)}{2}+c_1,y(x)\right ] \\ y(x)\to 0 \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a*y(x) + x*Derivative(y(x), x)**2 - y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
RecursionError : maximum recursion depth exceeded