29.30.4 problem 862

Internal problem ID [5444]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 30
Problem number : 862
Date solved : Tuesday, March 04, 2025 at 09:39:35 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

\begin{align*} x {y^{\prime }}^{2}+\left (a +x -y\right ) y^{\prime }-y&=0 \end{align*}

Maple. Time used: 0.102 (sec). Leaf size: 49
ode:=x*diff(y(x),x)^2+(a+x-y(x))*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y \left (x \right ) &= a -x -2 \sqrt {-a x} \\ y \left (x \right ) &= a -x +2 \sqrt {-a x} \\ y \left (x \right ) &= \frac {c_{1} \left (c_{1} x +a +x \right )}{c_{1} +1} \\ \end{align*}
Mathematica. Time used: 0.014 (sec). Leaf size: 60
ode=x (D[y[x],x])^2+(a+x-y[x])D[y[x],x]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to c_1 \left (x+\frac {a}{1+c_1}\right ) \\ y(x)\to \left (\sqrt {a}-i \sqrt {x}\right )^2 \\ y(x)\to \left (\sqrt {a}+i \sqrt {x}\right )^2 \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x)**2 + (a + x - y(x))*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out