Internal
problem
ID
[5826]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
10
Problem
number
:
Recognizable
Exact
Differential
equations.
Integrating
factors.
Exercise
10.7,
page
90
Date
solved
:
Monday, January 27, 2025 at 01:20:07 PM
CAS
classification
:
[_rational]
\begin{align*} x^{4} y^{2}-y+\left (x^{2} y^{4}-x \right ) y^{\prime }&=0 \end{align*}
Time used: 0.009 (sec). Leaf size: 25
\[
-\frac {x^{3}}{3}-\frac {1}{y \left (x \right ) x}-\frac {y \left (x \right )^{3}}{3}+c_{1} = 0
\]
Time used: 60.153 (sec). Leaf size: 1507
\begin{align*}
y(x)\to \frac {1}{4} \left (\sqrt {2} \sqrt {\frac {8 \sqrt [3]{2} x+2^{2/3} \left (x^9-6 c_1 x^6+9 c_1{}^2 x^3+\sqrt {x^2 \left (-256 x+\left (x^4-3 c_1 x\right ){}^4\right )}\right ){}^{2/3}}{x \sqrt [3]{x^9-6 c_1 x^6+9 c_1{}^2 x^3+\sqrt {x^2 \left (-256 x+\left (x^4-3 c_1 x\right ){}^4\right )}}}}-2 \sqrt {-\frac {\sqrt [3]{x \left (x^4-3 c_1 x\right ){}^2+\sqrt {x^2 \left (-256 x+\left (x^4-3 c_1 x\right ){}^4\right )}}}{\sqrt [3]{2} x}-\frac {2 \sqrt {2} \left (x^3-3 c_1\right )}{\sqrt {\frac {8 \sqrt [3]{2} x+2^{2/3} \left (x^9-6 c_1 x^6+9 c_1{}^2 x^3+\sqrt {x^2 \left (-256 x+\left (x^4-3 c_1 x\right ){}^4\right )}\right ){}^{2/3}}{x \sqrt [3]{x^9-6 c_1 x^6+9 c_1{}^2 x^3+\sqrt {x^2 \left (-256 x+\left (x^4-3 c_1 x\right ){}^4\right )}}}}}-\frac {4 \sqrt [3]{2}}{\sqrt [3]{x^9-6 c_1 x^6+9 c_1{}^2 x^3+\sqrt {x^2 \left (-256 x+\left (x^4-3 c_1 x\right ){}^4\right )}}}}\right ) \\
y(x)\to \frac {1}{4} \left (\sqrt {2} \sqrt {\frac {8 \sqrt [3]{2} x+2^{2/3} \left (x^9-6 c_1 x^6+9 c_1{}^2 x^3+\sqrt {x^2 \left (-256 x+\left (x^4-3 c_1 x\right ){}^4\right )}\right ){}^{2/3}}{x \sqrt [3]{x^9-6 c_1 x^6+9 c_1{}^2 x^3+\sqrt {x^2 \left (-256 x+\left (x^4-3 c_1 x\right ){}^4\right )}}}}+2 \sqrt {-\frac {\sqrt [3]{x \left (x^4-3 c_1 x\right ){}^2+\sqrt {x^2 \left (-256 x+\left (x^4-3 c_1 x\right ){}^4\right )}}}{\sqrt [3]{2} x}-\frac {2 \sqrt {2} \left (x^3-3 c_1\right )}{\sqrt {\frac {8 \sqrt [3]{2} x+2^{2/3} \left (x^9-6 c_1 x^6+9 c_1{}^2 x^3+\sqrt {x^2 \left (-256 x+\left (x^4-3 c_1 x\right ){}^4\right )}\right ){}^{2/3}}{x \sqrt [3]{x^9-6 c_1 x^6+9 c_1{}^2 x^3+\sqrt {x^2 \left (-256 x+\left (x^4-3 c_1 x\right ){}^4\right )}}}}}-\frac {4 \sqrt [3]{2}}{\sqrt [3]{x^9-6 c_1 x^6+9 c_1{}^2 x^3+\sqrt {x^2 \left (-256 x+\left (x^4-3 c_1 x\right ){}^4\right )}}}}\right ) \\
y(x)\to \frac {1}{4} \left (-\sqrt {2} \sqrt {\frac {8 \sqrt [3]{2} x+2^{2/3} \left (x^9-6 c_1 x^6+9 c_1{}^2 x^3+\sqrt {x^2 \left (-256 x+\left (x^4-3 c_1 x\right ){}^4\right )}\right ){}^{2/3}}{x \sqrt [3]{x^9-6 c_1 x^6+9 c_1{}^2 x^3+\sqrt {x^2 \left (-256 x+\left (x^4-3 c_1 x\right ){}^4\right )}}}}-2 \sqrt {-\frac {\sqrt [3]{x \left (x^4-3 c_1 x\right ){}^2+\sqrt {x^2 \left (-256 x+\left (x^4-3 c_1 x\right ){}^4\right )}}}{\sqrt [3]{2} x}+\frac {2 \sqrt {2} \left (x^3-3 c_1\right )}{\sqrt {\frac {8 \sqrt [3]{2} x+2^{2/3} \left (x^9-6 c_1 x^6+9 c_1{}^2 x^3+\sqrt {x^2 \left (-256 x+\left (x^4-3 c_1 x\right ){}^4\right )}\right ){}^{2/3}}{x \sqrt [3]{x^9-6 c_1 x^6+9 c_1{}^2 x^3+\sqrt {x^2 \left (-256 x+\left (x^4-3 c_1 x\right ){}^4\right )}}}}}-\frac {4 \sqrt [3]{2}}{\sqrt [3]{x^9-6 c_1 x^6+9 c_1{}^2 x^3+\sqrt {x^2 \left (-256 x+\left (x^4-3 c_1 x\right ){}^4\right )}}}}\right ) \\
y(x)\to \frac {1}{4} \left (2 \sqrt {-\frac {\sqrt [3]{x \left (x^4-3 c_1 x\right ){}^2+\sqrt {x^2 \left (-256 x+\left (x^4-3 c_1 x\right ){}^4\right )}}}{\sqrt [3]{2} x}+\frac {2 \sqrt {2} \left (x^3-3 c_1\right )}{\sqrt {\frac {8 \sqrt [3]{2} x+2^{2/3} \left (x^9-6 c_1 x^6+9 c_1{}^2 x^3+\sqrt {x^2 \left (-256 x+\left (x^4-3 c_1 x\right ){}^4\right )}\right ){}^{2/3}}{x \sqrt [3]{x^9-6 c_1 x^6+9 c_1{}^2 x^3+\sqrt {x^2 \left (-256 x+\left (x^4-3 c_1 x\right ){}^4\right )}}}}}-\frac {4 \sqrt [3]{2}}{\sqrt [3]{x^9-6 c_1 x^6+9 c_1{}^2 x^3+\sqrt {x^2 \left (-256 x+\left (x^4-3 c_1 x\right ){}^4\right )}}}}-\sqrt {2} \sqrt {\frac {8 \sqrt [3]{2} x+2^{2/3} \left (x^9-6 c_1 x^6+9 c_1{}^2 x^3+\sqrt {x^2 \left (-256 x+\left (x^4-3 c_1 x\right ){}^4\right )}\right ){}^{2/3}}{x \sqrt [3]{x^9-6 c_1 x^6+9 c_1{}^2 x^3+\sqrt {x^2 \left (-256 x+\left (x^4-3 c_1 x\right ){}^4\right )}}}}\right ) \\
\end{align*}