29.30.5 problem 863
Internal
problem
ID
[5445]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
30
Problem
number
:
863
Date
solved
:
Tuesday, March 04, 2025 at 09:39:37 PM
CAS
classification
:
[[_homogeneous, `class A`], _dAlembert]
\begin{align*} x {y^{\prime }}^{2}-\left (3 x -y\right ) y^{\prime }+y&=0 \end{align*}
✓ Maple. Time used: 0.054 (sec). Leaf size: 139
ode:=x*diff(y(x),x)^2-(3*x-y(x))*diff(y(x),x)+y(x) = 0;
dsolve(ode,y(x), singsol=all);
\begin{align*}
y \left (x \right ) &= x \\
\frac {c_{1} \left (-5 x +y \left (x \right )-\sqrt {9 x^{2}-10 x y \left (x \right )+y \left (x \right )^{2}}\right )}{x {\left (\frac {3 x -y \left (x \right )+\sqrt {9 x^{2}-10 x y \left (x \right )+y \left (x \right )^{2}}}{x}\right )}^{{3}/{2}}}+x &= 0 \\
\frac {\left (-5 x +y \left (x \right )+\sqrt {9 x^{2}-10 x y \left (x \right )+y \left (x \right )^{2}}\right ) c_{1} \sqrt {2}}{4 x {\left (\frac {-y \left (x \right )+3 x -\sqrt {9 x^{2}-10 x y \left (x \right )+y \left (x \right )^{2}}}{x}\right )}^{{3}/{2}}}+x &= 0 \\
\end{align*}
✓ Mathematica. Time used: 60.738 (sec). Leaf size: 1221
ode=x (D[y[x],x])^2-(3 x-y[x])D[y[x],x]+y[x]==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} \text {Solution too large to show}\end{align*}
✓ Sympy. Time used: 53.591 (sec). Leaf size: 197
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(x*Derivative(y(x), x)**2 - (3*x - y(x))*Derivative(y(x), x) + y(x),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
\left [ y{\left (x \right )} = C_{1} e^{\int \limits ^{\frac {x}{y{\left (x \right )}}} \frac {1}{u_{1} \left (3 u_{1} - \sqrt {9 u_{1}^{2} - 10 u_{1} + 1} - 3\right )}\, du_{1} + \int \limits ^{\frac {x}{y{\left (x \right )}}} \frac {\sqrt {9 u_{1}^{2} - 10 u_{1} + 1}}{u_{1} \left (3 u_{1} - \sqrt {9 u_{1}^{2} - 10 u_{1} + 1} - 3\right )}\, du_{1} - 3 \int \limits ^{\frac {x}{y{\left (x \right )}}} \frac {1}{3 u_{1} - \sqrt {9 u_{1}^{2} - 10 u_{1} + 1} - 3}\, du_{1}}, \ y{\left (x \right )} = C_{1} e^{\int \limits ^{\frac {x}{y{\left (x \right )}}} \frac {1}{u_{1} \left (3 u_{1} + \sqrt {9 u_{1}^{2} - 10 u_{1} + 1} - 3\right )}\, du_{1} - \int \limits ^{\frac {x}{y{\left (x \right )}}} \frac {\sqrt {9 u_{1}^{2} - 10 u_{1} + 1}}{u_{1} \left (3 u_{1} + \sqrt {9 u_{1}^{2} - 10 u_{1} + 1} - 3\right )}\, du_{1} - 3 \int \limits ^{\frac {x}{y{\left (x \right )}}} \frac {1}{3 u_{1} + \sqrt {9 u_{1}^{2} - 10 u_{1} + 1} - 3}\, du_{1}}\right ]
\]