Internal
problem
ID
[5838]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
10
Problem
number
:
Recognizable
Exact
Differential
equations.
Integrating
factors.
Exercise
10.19,
page
90
Date
solved
:
Monday, January 27, 2025 at 01:20:17 PM
CAS
classification
:
[_exact, _rational]
\begin{align*} 2 y x +x^{2}+b +\left (a +x^{2}+y^{2}\right ) y^{\prime }&=0 \end{align*}
Time used: 0.006 (sec). Leaf size: 501
\begin{align*}
y \left (x \right ) &= \frac {-4 x^{2}-4 a +\left (-4 x^{3}-12 b x -12 c_{1} +4 \sqrt {5 x^{6}+6 \left (2 a +b \right ) x^{4}+6 c_{1} x^{3}+3 \left (4 a^{2}+3 b^{2}\right ) x^{2}+18 b x c_{1} +4 a^{3}+9 c_{1}^{2}}\right )^{{2}/{3}}}{2 \left (-4 x^{3}-12 b x -12 c_{1} +4 \sqrt {5 x^{6}+6 \left (2 a +b \right ) x^{4}+6 c_{1} x^{3}+3 \left (4 a^{2}+3 b^{2}\right ) x^{2}+18 b x c_{1} +4 a^{3}+9 c_{1}^{2}}\right )^{{1}/{3}}} \\
y \left (x \right ) &= -\frac {\left (\frac {i \sqrt {3}}{4}+\frac {1}{4}\right ) \left (-4 x^{3}-12 b x -12 c_{1} +4 \sqrt {5 x^{6}+6 \left (2 a +b \right ) x^{4}+6 c_{1} x^{3}+3 \left (4 a^{2}+3 b^{2}\right ) x^{2}+18 b x c_{1} +4 a^{3}+9 c_{1}^{2}}\right )^{{2}/{3}}+\left (x^{2}+a \right ) \left (i \sqrt {3}-1\right )}{\left (-4 x^{3}-12 b x -12 c_{1} +4 \sqrt {5 x^{6}+6 \left (2 a +b \right ) x^{4}+6 c_{1} x^{3}+3 \left (4 a^{2}+3 b^{2}\right ) x^{2}+18 b x c_{1} +4 a^{3}+9 c_{1}^{2}}\right )^{{1}/{3}}} \\
y \left (x \right ) &= \frac {\frac {\left (i \sqrt {3}-1\right ) \left (-4 x^{3}-12 b x -12 c_{1} +4 \sqrt {5 x^{6}+6 \left (2 a +b \right ) x^{4}+6 c_{1} x^{3}+3 \left (4 a^{2}+3 b^{2}\right ) x^{2}+18 b x c_{1} +4 a^{3}+9 c_{1}^{2}}\right )^{{2}/{3}}}{4}+\left (x^{2}+a \right ) \left (1+i \sqrt {3}\right )}{\left (-4 x^{3}-12 b x -12 c_{1} +4 \sqrt {5 x^{6}+6 \left (2 a +b \right ) x^{4}+6 c_{1} x^{3}+3 \left (4 a^{2}+3 b^{2}\right ) x^{2}+18 b x c_{1} +4 a^{3}+9 c_{1}^{2}}\right )^{{1}/{3}}} \\
\end{align*}
Time used: 7.538 (sec). Leaf size: 396
\begin{align*}
y(x)\to \frac {\sqrt [3]{2} \left (\sqrt {4 \left (a+x^2\right )^3+\left (3 b x+x^3-3 c_1\right ){}^2}-3 b x-x^3+3 c_1\right ){}^{2/3}-2 a-2 x^2}{2^{2/3} \sqrt [3]{\sqrt {4 \left (a+x^2\right )^3+\left (3 b x+x^3-3 c_1\right ){}^2}-3 b x-x^3+3 c_1}} \\
y(x)\to \frac {\left (1+i \sqrt {3}\right ) \left (a+x^2\right )}{2^{2/3} \sqrt [3]{\sqrt {4 \left (a+x^2\right )^3+\left (3 b x+x^3-3 c_1\right ){}^2}-3 b x-x^3+3 c_1}}+\frac {i \left (\sqrt {3}+i\right ) \sqrt [3]{\sqrt {4 \left (a+x^2\right )^3+\left (3 b x+x^3-3 c_1\right ){}^2}-3 b x-x^3+3 c_1}}{2 \sqrt [3]{2}} \\
y(x)\to \frac {\left (1-i \sqrt {3}\right ) \left (a+x^2\right )}{2^{2/3} \sqrt [3]{\sqrt {4 \left (a+x^2\right )^3+\left (3 b x+x^3-3 c_1\right ){}^2}-3 b x-x^3+3 c_1}}-\frac {i \left (\sqrt {3}-i\right ) \sqrt [3]{\sqrt {4 \left (a+x^2\right )^3+\left (3 b x+x^3-3 c_1\right ){}^2}-3 b x-x^3+3 c_1}}{2 \sqrt [3]{2}} \\
\end{align*}