29.33.5 problem 967

Internal problem ID [5544]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 33
Problem number : 967
Date solved : Tuesday, March 04, 2025 at 09:55:47 PM
CAS classification : [_separable]

\begin{align*} x y {y^{\prime }}^{2}+\left (3 x^{2}-2 y^{2}\right ) y^{\prime }-6 x y&=0 \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 35
ode:=x*y(x)*diff(y(x),x)^2+(3*x^2-2*y(x)^2)*diff(y(x),x)-6*x*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y \left (x \right ) &= c_{1} x^{2} \\ y \left (x \right ) &= \sqrt {-3 x^{2}+c_{1}} \\ y \left (x \right ) &= -\sqrt {-3 x^{2}+c_{1}} \\ \end{align*}
Mathematica. Time used: 0.139 (sec). Leaf size: 54
ode=x y[x] (D[y[x],x])^2+(3 x^2-2 y[x]^2)D[y[x],x]-6 x y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to c_1 x^2 \\ y(x)\to -\sqrt {-3 x^2+2 c_1} \\ y(x)\to \sqrt {-3 x^2+2 c_1} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.532 (sec). Leaf size: 32
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*y(x)*Derivative(y(x), x)**2 - 6*x*y(x) + (3*x**2 - 2*y(x)**2)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} x^{2}, \ y{\left (x \right )} = - \sqrt {C_{1} - 3 x^{2}}, \ y{\left (x \right )} = \sqrt {C_{1} - 3 x^{2}}\right ] \]