32.7.12 problem Exercise 20.13, page 220

Internal problem ID [5927]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number : Exercise 20.13, page 220
Date solved : Monday, January 27, 2025 at 01:27:38 PM
CAS classification : [[_high_order, _quadrature]]

\begin{align*} y^{\prime \prime \prime \prime }&=0 \end{align*}

Solution by Maple

Time used: 0.001 (sec). Leaf size: 21

dsolve(diff(y(x),x$4)=0,y(x), singsol=all)
 
\[ y \left (x \right ) = \frac {1}{6} c_{1} x^{3}+\frac {1}{2} c_{2} x^{2}+x c_3 +c_4 \]

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 22

DSolve[D[y[x],{x,4}]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to x (x (c_4 x+c_3)+c_2)+c_1 \]