Internal
problem
ID
[5565]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
33
Problem
number
:
989
Date
solved
:
Tuesday, March 04, 2025 at 10:19:18 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]
ode:=(x+y(x))^2*diff(y(x),x)^2-(x^2-x*y(x)-2*y(x)^2)*diff(y(x),x)-(x-y(x))*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x+y[x])^2 (D[y[x],x])^2 -(x^2-x y[x]-2 y[x]^2) D[y[x],x]-(x-y[x])y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-x + y(x))*y(x) + (x + y(x))**2*Derivative(y(x), x)**2 - (x**2 - x*y(x) - 2*y(x)**2)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)