Internal
problem
ID
[5566]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
33
Problem
number
:
990
Date
solved
:
Tuesday, March 04, 2025 at 10:19:21 PM
CAS
classification
:
[[_homogeneous, `class C`], _dAlembert]
ode:=(a^2-(x-y(x))^2)*diff(y(x),x)^2+2*a^2*diff(y(x),x)+a^2-(x-y(x))^2 = 0; dsolve(ode,y(x), singsol=all);
ode=(a^2-(x-y[x])^2)(D[y[x],x])^2+2 a^2 D[y[x],x]+a^2-(x-y[x])^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(2*a**2*Derivative(y(x), x) + a**2 + (a**2 - (x - y(x))**2)*Derivative(y(x), x)**2 - (x - y(x))**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)