29.37.8 problem 1123

Internal problem ID [5666]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 37
Problem number : 1123
Date solved : Tuesday, March 04, 2025 at 11:17:29 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _Clairaut]

\begin{align*} \sqrt {a^{2}+b^{2} {y^{\prime }}^{2}}+x y^{\prime }-y&=0 \end{align*}

Maple. Time used: 0.536 (sec). Leaf size: 21
ode:=(a^2+b^2*diff(y(x),x)^2)^(1/2)+x*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \sqrt {b^{2} c_{1}^{2}+a^{2}}+c_{1} x \]
Mathematica. Time used: 0.365 (sec). Leaf size: 37
ode=Sqrt[a^2+b^2*(D[y[x],x])^2] +x*D[y[x],x] -y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \sqrt {a^2+b^2 c_1{}^2}+c_1 x \\ y(x)\to \sqrt {a^2} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) + sqrt(a**2 + b**2*Derivative(y(x), x)**2) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out