Internal
problem
ID
[5666]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
37
Problem
number
:
1123
Date
solved
:
Tuesday, March 04, 2025 at 11:17:29 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _Clairaut]
ode:=(a^2+b^2*diff(y(x),x)^2)^(1/2)+x*diff(y(x),x)-y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=Sqrt[a^2+b^2*(D[y[x],x])^2] +x*D[y[x],x] -y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(x*Derivative(y(x), x) + sqrt(a**2 + b**2*Derivative(y(x), x)**2) - y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out