34.3.10 problem 11

Internal problem ID [6049]
Book : A treatise on ordinary and partial differential equations by William Woolsey Johnson. 1913
Section : Chapter VII, Solutions in series. Examples XIV. page 177
Problem number : 11
Date solved : Monday, January 27, 2025 at 01:34:25 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (x -2\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.006 (sec). Leaf size: 43

Order:=6; 
dsolve(x^2*diff(y(x),x$2)+x^2*diff(y(x),x)+(x-2)*y(x)=0,y(x),type='series',x=0);
 
\[ y = c_1 \,x^{2} \left (1-\frac {3}{4} x +\frac {3}{10} x^{2}-\frac {1}{12} x^{3}+\frac {1}{56} x^{4}-\frac {1}{320} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\frac {c_2 \left (12-2 x^{3}+\frac {3}{2} x^{4}-\frac {3}{5} x^{5}+\operatorname {O}\left (x^{6}\right )\right )}{x} \]

Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 60

AsymptoticDSolveValue[x^2*D[y[x],{x,2}]+x^2*D[y[x],x]+(x-2)*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (\frac {x^3}{8}-\frac {x^2}{6}+\frac {1}{x}\right )+c_2 \left (\frac {x^6}{56}-\frac {x^5}{12}+\frac {3 x^4}{10}-\frac {3 x^3}{4}+x^2\right ) \]