34.3.11 problem 13

Internal problem ID [6050]
Book : A treatise on ordinary and partial differential equations by William Woolsey Johnson. 1913
Section : Chapter VII, Solutions in series. Examples XIV. page 177
Problem number : 13
Date solved : Monday, January 27, 2025 at 01:34:27 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x -2\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.004 (sec). Leaf size: 47

Order:=6; 
dsolve(x^2*diff(y(x),x$2)-x^2*diff(y(x),x)+(x-2)*y(x)=0,y(x),type='series',x=0);
 
\[ y = c_1 \,x^{2} \left (1+\frac {1}{4} x +\frac {1}{20} x^{2}+\frac {1}{120} x^{3}+\frac {1}{840} x^{4}+\frac {1}{6720} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\frac {c_2 \left (12+12 x +6 x^{2}+2 x^{3}+\frac {1}{2} x^{4}+\frac {1}{10} x^{5}+\operatorname {O}\left (x^{6}\right )\right )}{x} \]

Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 66

AsymptoticDSolveValue[x^2*D[y[x],{x,2}]-x^2*D[y[x],x]+(x-2)*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (\frac {x^3}{24}+\frac {x^2}{6}+\frac {x}{2}+\frac {1}{x}+1\right )+c_2 \left (\frac {x^6}{840}+\frac {x^5}{120}+\frac {x^4}{20}+\frac {x^3}{4}+x^2\right ) \]