Internal
problem
ID
[5846]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
11,
Bernoulli
Equations
Problem
number
:
Exercise
11.8,
page
97
Date
solved
:
Tuesday, March 04, 2025 at 11:48:05 PM
CAS
classification
:
[_rational, _Bernoulli]
ode:=(-x^3+1)*diff(y(x),x)-2*(1+x)*y(x) = y(x)^(5/2); dsolve(ode,y(x), singsol=all);
ode=(1-x^3)*D[y[x],x]-2*(1+x)*y[x]==y[x]^(5/2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((1 - x**3)*Derivative(y(x), x) - (2*x + 2)*y(x) - y(x)**(5/2),0) ics = {} dsolve(ode,func=y(x),ics=ics)