Internal
problem
ID
[5847]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
11,
Bernoulli
Equations
Problem
number
:
Exercise
11.9,
page
97
Date
solved
:
Tuesday, March 04, 2025 at 11:48:14 PM
CAS
classification
:
[_linear]
ode:=tan(theta)*diff(r(theta),theta)-r(theta) = tan(theta)^2; dsolve(ode,r(theta), singsol=all);
ode=Tan[\[Theta]]*D[ r[\[Theta]], \[Theta] ]-r[\[Theta]]==Tan[\[Theta]]^2; ic={}; DSolve[{ode,ic},r[\[Theta]],\[Theta],IncludeSingularSolutions->True]
from sympy import * theta = symbols("theta") r = Function("r") ode = Eq(-r(theta) - tan(theta)**2 + tan(theta)*Derivative(r(theta), theta),0) ics = {} dsolve(ode,func=r(theta),ics=ics)