32.5.10 problem Exercise 11.11, page 97

Internal problem ID [5848]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations
Problem number : Exercise 11.11, page 97
Date solved : Tuesday, March 04, 2025 at 11:48:17 PM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }+2 y&=3 \,{\mathrm e}^{-2 x} \end{align*}

Maple. Time used: 0.000 (sec). Leaf size: 14
ode:=diff(y(x),x)+2*y(x) = 3*exp(-2*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \left (3 x +c_{1} \right ) {\mathrm e}^{-2 x} \]
Mathematica. Time used: 0.06 (sec). Leaf size: 17
ode=D[y[x],x]+2*y[x]==3*Exp[-2*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-2 x} (3 x+c_1) \]
Sympy. Time used: 0.151 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*y(x) + Derivative(y(x), x) - 3*exp(-2*x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + 3 x\right ) e^{- 2 x} \]