7.5.4 problem 4

Internal problem ID [108]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.6 (substitution and exact equations). Problems at page 72
Problem number : 4
Date solved : Friday, February 07, 2025 at 07:50:03 AM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (x -y\right ) y^{\prime }&=x +y \end{align*}

Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

dsolve((x-y(x))*diff(y(x),x)=x+y(x),y(x), singsol=all)
 
\[ y = \tan \left (\operatorname {RootOf}\left (-2 \textit {\_Z} +\ln \left (\sec \left (\textit {\_Z} \right )^{2}\right )+2 \ln \left (x \right )+2 c_1 \right )\right ) x \]

Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 36

DSolve[(x-y[x])*D[y[x],x]==x+y[x],y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\frac {1}{2} \log \left (\frac {y(x)^2}{x^2}+1\right )-\arctan \left (\frac {y(x)}{x}\right )=-\log (x)+c_1,y(x)\right ] \]