|
# |
ODE |
Mathematica |
Maple |
Sympy |
|
\[
{} {y^{\prime }}^{2} = 4 y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \frac {1-4 x y^{2}}{x^{\prime }} = y^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \frac {x+y \,{\mathrm e}^{y}}{x^{\prime }} = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \frac {1+2 x y}{x^{\prime }} = y^{2}+1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y = x y^{\prime }-\frac {{y^{\prime }}^{2}}{4}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 4 y^{2} = x^{2} {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 1+\left (2 y-x^{2}\right ) {y^{\prime }}^{2}-2 x^{2} y {y^{\prime }}^{2} = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x \left ({y^{\prime }}^{2}-1\right ) = 2 y y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (1-y^{2}\right ) {y^{\prime }}^{2} = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y {y^{\prime }}^{2}+\left (x y-1\right ) y^{\prime } = y
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{2} {y^{\prime }}^{2}+x y y^{\prime }-2 x^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+2 y^{2} = x^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{3}+\left (x +y-2 x y\right ) {y^{\prime }}^{2}-2 y^{\prime } x y \left (x +y\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y {y^{\prime }}^{2}+\left (y^{2}-x^{3}-x y^{2}\right ) y^{\prime }-x y \left (x^{2}+y^{2}\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y = y^{\prime } x \left (1+y^{\prime }\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y = x +3 \ln \left (y^{\prime }\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y \left (1+{y^{\prime }}^{2}\right ) = 2
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2}+y^{2} = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x \left ({y^{\prime }}^{2}-1\right ) = 2 y y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x^{2} y+{y^{\prime }}^{2} = y^{\prime } x^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y {y^{\prime }}^{2} = 3 x y^{\prime }+y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 8 x +1 = y {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y {y^{\prime }}^{2}+2 y^{\prime }+1 = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (1+{y^{\prime }}^{2}\right ) x = \left (x +y\right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2}-3 y y^{\prime }+x {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y+2 x y^{\prime } = x {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x = {y^{\prime }}^{2}+y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x = y-{y^{\prime }}^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x +2 y y^{\prime } = x {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x {y^{\prime }}^{3} = y y^{\prime }+1
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y \left (1+{y^{\prime }}^{2}\right ) = 2 x y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 2 x +x {y^{\prime }}^{2} = 2 y y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x = y y^{\prime }+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 4 x {y^{\prime }}^{2}+2 x y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y = y^{\prime } x \left (1+y^{\prime }\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x {y^{\prime }}^{3}+1 = y {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{3}+x y y^{\prime } = 2 y^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 3 {y^{\prime }}^{4} x = {y^{\prime }}^{3} y+1
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} 2 {y^{\prime }}^{5}+2 x y^{\prime } = y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \frac {1}{{y^{\prime }}^{2}}+x y^{\prime } = 2 y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 2 y = 3 x y^{\prime }+4+2 \ln \left (y^{\prime }\right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y = x y^{\prime }+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y = x y^{\prime }+\frac {1}{y^{\prime }}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y = x y^{\prime }-\sqrt {y^{\prime }}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y = x y^{\prime }+\ln \left (y^{\prime }\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y = x y^{\prime }+\frac {3}{{y^{\prime }}^{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y = x y^{\prime }-{y^{\prime }}^{{2}/{3}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y = x y^{\prime }+{\mathrm e}^{y^{\prime }}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (y-x y^{\prime }\right )^{2} = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x {y^{\prime }}^{2}-y y^{\prime }-2 = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{2}-2 x y y^{\prime }+{y^{\prime }}^{2} \left (x^{2}-1\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2}-y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2}-3 y^{\prime }+2 = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y = y^{\prime }+\frac {{y^{\prime }}^{2}}{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (y-x y^{\prime }\right )^{2} = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y-x = {y^{\prime }}^{2} \left (1-\frac {2 y^{\prime }}{3}\right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1 = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y = x y^{\prime }+{y^{\prime }}^{3}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x \left ({y^{\prime }}^{2}-1\right ) = 2 y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime } \left (y^{\prime }+2\right ) = y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x = y^{\prime } \sqrt {1+{y^{\prime }}^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 {y^{\prime }}^{2} \left (y-x y^{\prime }\right ) = 1
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{3}+y^{2} = x y y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} 2 x y^{\prime }-y = y^{\prime } \ln \left (y y^{\prime }\right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y = x y^{\prime }-x^{2} {y^{\prime }}^{3}
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} y \left (y-2 x y^{\prime }\right )^{3} = {y^{\prime }}^{2}
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} y+x y^{\prime } = 4 \sqrt {y^{\prime }}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x y^{\prime }-y = \ln \left (y^{\prime }\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 5 y+{y^{\prime }}^{2} = x \left (x +y^{\prime }\right )
\]
|
✗ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = {\mathrm e}^{\frac {x y^{\prime }}{y}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 {y^{\prime }}^{3}-3 {y^{\prime }}^{2}+x = y
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} y^{\prime } \left (x -\ln \left (y^{\prime }\right )\right ) = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2} = a \,x^{n}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2} = y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2} = x -y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2} = y+x^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2}+x^{2} = 4 y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2}+3 x^{2} = 8 y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2}+a \,x^{2}+b y = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} {y^{\prime }}^{2} = 1+y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2} = 1-y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2} = a^{2}-y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2} = a^{2} y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2} = a +b y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2} = x^{2} y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2} = \left (-1+y\right ) y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2} = \left (y-a \right ) \left (y-b \right ) \left (y-c \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2} = a^{2} y^{n}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2} = a^{2} \left (1-\ln \left (y\right )^{2}\right ) y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right ) \left (y-b \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right ) \left (y-b \right ) \left (y-c \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right ) \left (y-c \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2} = f \left (x \right )^{2} \left (y-a \right ) \left (y-b \right ) \left (y-c \right )^{2}
\]
|
✓ |
✓ |
✓ |
|