4.14.2 Problems 101 to 200

Table 4.847: First order ode non-linear in derivative

#

ODE

Mathematica

Maple

Sympy

5355

\[ {} {y^{\prime }}^{2} = f \left (x \right )^{2} \left (y-u \left (x \right )\right )^{2} \left (y-a \right ) \left (y-b \right ) \]

5356

\[ {} {y^{\prime }}^{2}+2 y^{\prime }+x = 0 \]

5357

\[ {} {y^{\prime }}^{2}-2 y^{\prime }+a \left (x -y\right ) = 0 \]

5358

\[ {} {y^{\prime }}^{2}-2 y^{\prime }-y^{2} = 0 \]

5359

\[ {} {y^{\prime }}^{2}-5 y^{\prime }+6 = 0 \]

5360

\[ {} {y^{\prime }}^{2}-7 y^{\prime }+12 = 0 \]

5361

\[ {} {y^{\prime }}^{2}+a y^{\prime }+b = 0 \]

5362

\[ {} {y^{\prime }}^{2}+a y^{\prime }+b x = 0 \]

5363

\[ {} {y^{\prime }}^{2}+a y^{\prime }+b y = 0 \]

5364

\[ {} {y^{\prime }}^{2}+x y^{\prime }+1 = 0 \]

5365

\[ {} {y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

5366

\[ {} {y^{\prime }}^{2}-x y^{\prime }+y = 0 \]

5367

\[ {} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

5368

\[ {} {y^{\prime }}^{2}+x y^{\prime }+x -y = 0 \]

5369

\[ {} {y^{\prime }}^{2}+\left (1-x \right ) y^{\prime }+y = 0 \]

5370

\[ {} {y^{\prime }}^{2}-\left (1+x \right ) y^{\prime }+y = 0 \]

5371

\[ {} {y^{\prime }}^{2}-\left (2-x \right ) y^{\prime }+1-y = 0 \]

5372

\[ {} {y^{\prime }}^{2}+\left (x +a \right ) y^{\prime }-y = 0 \]

5373

\[ {} {y^{\prime }}^{2}-2 x y^{\prime }+1 = 0 \]

5374

\[ {} {y^{\prime }}^{2}+2 x y^{\prime }-3 x^{2} = 0 \]

5375

\[ {} {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

5376

\[ {} {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

5377

\[ {} {y^{\prime }}^{2}-2 x y^{\prime }+2 y = 0 \]

5378

\[ {} {y^{\prime }}^{2}-\left (2 x +1\right ) y^{\prime }-x \left (1-x \right ) = 0 \]

5379

\[ {} {y^{\prime }}^{2}+2 \left (1-x \right ) y^{\prime }-2 x +2 y = 0 \]

5380

\[ {} {y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

5381

\[ {} {y^{\prime }}^{2}-4 \left (1+x \right ) y^{\prime }+4 y = 0 \]

5382

\[ {} {y^{\prime }}^{2}+a x y^{\prime } = b c \,x^{2} \]

5383

\[ {} {y^{\prime }}^{2}-a x y^{\prime }+a y = 0 \]

5384

\[ {} {y^{\prime }}^{2}+a x y^{\prime }+b \,x^{2}+c y = 0 \]

5385

\[ {} {y^{\prime }}^{2}+\left (b x +a \right ) y^{\prime }+c = b y \]

5386

\[ {} {y^{\prime }}^{2}-2 x^{2} y^{\prime }+2 x y^{\prime } = 0 \]

5387

\[ {} {y^{\prime }}^{2}+a \,x^{3} y^{\prime }-2 a \,x^{2} y = 0 \]

5388

\[ {} {y^{\prime }}^{2}-2 a \,x^{3} y^{\prime }+4 a \,x^{2} y = 0 \]

5389

\[ {} {y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y = 0 \]

5390

\[ {} {y^{\prime }}^{2}-2 y^{\prime } \cosh \left (x \right )+1 = 0 \]

5391

\[ {} y y^{\prime }+{y^{\prime }}^{2} = x \left (x +y\right ) \]

5392

\[ {} {y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \]

5393

\[ {} {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y = 0 \]

5394

\[ {} {y^{\prime }}^{2}-2 y y^{\prime }-2 x = 0 \]

5395

\[ {} {y^{\prime }}^{2}+\left (1+2 y\right ) y^{\prime }+y \left (-1+y\right ) = 0 \]

5396

\[ {} {y^{\prime }}^{2}-2 \left (x -y\right ) y^{\prime }-4 x y = 0 \]

5397

\[ {} {y^{\prime }}^{2}-\left (1+4 y\right ) y^{\prime }+\left (1+4 y\right ) y = 0 \]

5398

\[ {} {y^{\prime }}^{2}-2 \left (1-3 y\right ) y^{\prime }-\left (4-9 y\right ) y = 0 \]

5399

\[ {} {y^{\prime }}^{2}+\left (a +6 y\right ) y^{\prime }+y \left (3 a +b +9 y\right ) = 0 \]

5400

\[ {} {y^{\prime }}^{2}+a y y^{\prime }-a x = 0 \]

5401

\[ {} {y^{\prime }}^{2}-a y y^{\prime }-a x = 0 \]

5402

\[ {} {y^{\prime }}^{2}+\left (a x +b y\right ) y^{\prime }+a b x y = 0 \]

5403

\[ {} {y^{\prime }}^{2}-x y y^{\prime }+y^{2} \ln \left (a y\right ) = 0 \]

5404

\[ {} {y^{\prime }}^{2}-\left (1+2 x y\right ) y^{\prime }+2 x y = 0 \]

5405

\[ {} {y^{\prime }}^{2}-\left (4+y^{2}\right ) y^{\prime }+4+y^{2} = 0 \]

5406

\[ {} {y^{\prime }}^{2}-\left (x -y\right ) y y^{\prime }-x y^{3} = 0 \]

5407

\[ {} {y^{\prime }}^{2}+x y^{2} y^{\prime }+y^{3} = 0 \]

5408

\[ {} {y^{\prime }}^{2}-2 x^{3} y^{2} y^{\prime }-4 x^{2} y^{3} = 0 \]

5409

\[ {} {y^{\prime }}^{2}-x y \left (x^{2}+y^{2}\right ) y^{\prime }+x^{4} y^{4} = 0 \]

5410

\[ {} {y^{\prime }}^{2}+2 x y^{3} y^{\prime }+y^{4} = 0 \]

5411

\[ {} {y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )-y^{2} = 0 \]

5412

\[ {} {y^{\prime }}^{2}-3 x y^{{2}/{3}} y^{\prime }+9 y^{{5}/{3}} = 0 \]

5413

\[ {} {y^{\prime }}^{2} = {\mathrm e}^{4 x -2 y} \left (y^{\prime }-1\right ) \]

5414

\[ {} 2 {y^{\prime }}^{2}+x y^{\prime }-2 y = 0 \]

5415

\[ {} 2 {y^{\prime }}^{2}-\left (1-x \right ) y^{\prime }-y = 0 \]

5416

\[ {} 2 {y^{\prime }}^{2}-2 x^{2} y^{\prime }+3 x y = 0 \]

5417

\[ {} 2 {y^{\prime }}^{2}+2 \left (6 y-1\right ) y^{\prime }+3 y \left (6 y-1\right ) = 0 \]

5418

\[ {} 3 {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

5419

\[ {} 3 {y^{\prime }}^{2}+4 x y^{\prime }+x^{2}-y = 0 \]

5420

\[ {} 4 {y^{\prime }}^{2} = 9 x \]

5421

\[ {} 4 {y^{\prime }}^{2}+2 x \,{\mathrm e}^{-2 y} y^{\prime }-{\mathrm e}^{-2 y} = 0 \]

5422

\[ {} 4 {y^{\prime }}^{2}+2 \,{\mathrm e}^{2 x -2 y} y^{\prime }-{\mathrm e}^{2 x -2 y} = 0 \]

5423

\[ {} 5 {y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

5424

\[ {} 5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0 \]

5425

\[ {} 9 {y^{\prime }}^{2}+3 x y^{4} y^{\prime }+y^{5} = 0 \]

5426

\[ {} x {y^{\prime }}^{2} = a \]

5427

\[ {} x {y^{\prime }}^{2} = -x^{2}+a \]

5428

\[ {} x {y^{\prime }}^{2} = y \]

5429

\[ {} x {y^{\prime }}^{2}+x -2 y = 0 \]

5430

\[ {} x {y^{\prime }}^{2}+y^{\prime } = y \]

5431

\[ {} x {y^{\prime }}^{2}+2 y^{\prime }-y = 0 \]

5432

\[ {} x {y^{\prime }}^{2}-2 y^{\prime }-y = 0 \]

5433

\[ {} x {y^{\prime }}^{2}+4 y^{\prime }-2 y = 0 \]

5434

\[ {} x {y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

5435

\[ {} x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x = 0 \]

5436

\[ {} x {y^{\prime }}^{2}+y y^{\prime }+a = 0 \]

5437

\[ {} x {y^{\prime }}^{2}-y y^{\prime }+a = 0 \]

5438

\[ {} x {y^{\prime }}^{2}-y y^{\prime }+a x = 0 \]

5439

\[ {} x {y^{\prime }}^{2}+y y^{\prime }+x^{3} = 0 \]

5440

\[ {} x {y^{\prime }}^{2}-y y^{\prime }+a y = 0 \]

5441

\[ {} x {y^{\prime }}^{2}+y y^{\prime }-y^{4} = 0 \]

5442

\[ {} x {y^{\prime }}^{2}+\left (-y+a \right ) y^{\prime }+b = 0 \]

5443

\[ {} x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y = 0 \]

5444

\[ {} x {y^{\prime }}^{2}+\left (a +x -y\right ) y^{\prime }-y = 0 \]

5445

\[ {} x {y^{\prime }}^{2}-\left (3 x -y\right ) y^{\prime }+y = 0 \]

5446

\[ {} x {y^{\prime }}^{2}+a +b x -y-b y = 0 \]

5447

\[ {} x {y^{\prime }}^{2}-2 y y^{\prime }+a = 0 \]

5448

\[ {} x {y^{\prime }}^{2}-2 y y^{\prime }+a x = 0 \]

5449

\[ {} x {y^{\prime }}^{2}-2 y y^{\prime }+x +2 y = 0 \]

5450

\[ {} x {y^{\prime }}^{2}-3 y y^{\prime }+9 x^{2} = 0 \]

5451

\[ {} x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

5452

\[ {} x {y^{\prime }}^{2}-a y y^{\prime }+b = 0 \]

5453

\[ {} x {y^{\prime }}^{2}+a y y^{\prime }+b x = 0 \]

5454

\[ {} x {y^{\prime }}^{2}-\left (1+x y\right ) y^{\prime }+y = 0 \]