Internal
problem
ID
[6531]
Book
:
Schaums
Outline
Differential
Equations,
4th
edition.
Bronson
and
Costa.
McGraw
Hill
2014
Section
:
Chapter
12.
VARIATION
OF
PARAMETERS.
page
104
Problem
number
:
Problem
12.5
Date
solved
:
Wednesday, March 05, 2025 at 12:55:54 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(x(t),t),t)+4*x(t) = sin(2*t)^2; dsolve(ode,x(t), singsol=all);
ode=D[x[t],{t,2}]+4*x[t]==Sin[2*t]^2; ic={}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(4*x(t) - sin(2*t)**2 + Derivative(x(t), (t, 2)),0) ics = {} dsolve(ode,func=x(t),ics=ics)