Internal
problem
ID
[6532]
Book
:
Schaums
Outline
Differential
Equations,
4th
edition.
Bronson
and
Costa.
McGraw
Hill
2014
Section
:
Chapter
12.
VARIATION
OF
PARAMETERS.
page
104
Problem
number
:
Problem
12.6
Date
solved
:
Wednesday, March 05, 2025 at 12:55:58 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=t^2*diff(diff(N(t),t),t)-2*t*diff(N(t),t)+2*N(t) = t*ln(t); dsolve(ode,N(t), singsol=all);
ode=t^2*D[ n[t],{t,2}]-2*t*D[ n[t],t]+2*n[t]==t*Log[t]; ic={}; DSolve[{ode,ic},n[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") n = Function("n") ode = Eq(t**2*Derivative(n(t), (t, 2)) - t*log(t) - 2*t*Derivative(n(t), t) + 2*n(t),0) ics = {} dsolve(ode,func=n(t),ics=ics)